———e

for public e
distribution ¥

This document h

DTIC:
AD-A253 970
AW AUG 1S B

A

PRODIGY4.0: The Manual and Tutorial *

The PRODIGY Research Group,
under the supervision of Jaime G. Carbonell:
Jim Blythe, Oren Etzioni, Yolanda Gil, Robert Joseph, Dan Kahn,
Craig Knoblock, Steven Minton, Alicia Pérez, Scott Reilly,
Manuela Veloso, and Xuemei Wang. *

June 1992
CMU-CS-92-150

F——
S
“_
—
—
S
School of Computer Science ———
Camegie Mellon University E‘*“*
Pittsburgh, PA 15213 =—
——

Abstract

PRODIGY is a general-purpose problem-solving architecture that serves as a basis for research in planning,
machine leaming, apprentice-type knowledge-refinement interfaces, and expert systems. This document
is a manual for the latest version of the PRODIGY system, PRODIGY4.0, and includes descriptions of the
PRODIGY representation language, control structure, user interface, abstraction module, and other features.
The tutorial style is meant to provide the reader with the ability to run PRODIGY and make use of all the

basic features, as well as gradually learning the more esoteric aspects of PRODIGY4.0.

—»«*—‘M—— - N
as been opproved ‘

lease and sale; its

s unlimited.

*This research was sponsored by the Avionics Laboratory, Wright Research and Development Center, Aeronautical Systems
Division (AFSC), U. S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C-1465, Arpa Order No.

7597. The views and conclusions contained in this document are those of the anthors and should not be interpreted as representing

the official policies, either expressed or implied, of the U.S. Government.
The initial design was fully developed and implemented by Jim Blythe, Xuemei Wang, and Dan Kahn. The authors acknowledge

Steven Minton, Jaime Carbonell, Craig Knoblock, and Dan Kuokka in designing and implementing the initial PRODIGY system,

PRODIGY2.0. Manuela Veloso and Daniel Borrajo designed and implemented the first nonlinear problem solver for PRODIGY.
NOLIMIT. Our past expexience with PRODIGY2.0 and NOLIMIT drove our design and implementation of PRODIGY4.0. Most of this

manual was written by Jim Blythe, Yolanda Gil, Robert Joseph, Alicia Pérez (editor), and Xuemei Wang.

- 8§ 001

Al

B2-c6

1255

S o

. .

»

)’ Y -

K v H
[T

A ST

4" h PR, .

:‘A :»'.; -
‘«' -
i g

Keywords: planning, problem solving, machine leaming, Prodigy

Contents

1 Introduction
1.1 PRODIGY4.0

...

12 HowtoUseThisManual ¢t i i i i i i e et i e e et oot e e e s e e

2 PRODIGY in a Nutshell
21 DefiningaDomaint e e e e e e e
22 SpecificationofaProblem L. e
23 TheGoal Tree i ittt it et e e e e e e e e e e e e e
24 TheProblem-Solving Trace ¢ . ¢ v i i i it ittt ettt

3 Defining a Domain
31 TypeSpecification et e e e e e e e e e
32 OperatorsandInferenceRules
3.3 SpecificationofaProblem e .
34 BeyondtheBasics it e e e e e e e e
341 Quantification i e e e e e e e e e e e e e e e
342 SuaticProperties e e e e e e .
34.3 Primaryand ConditionalEffects
344 InferenceRules i,
345 InfiniteTypes i i i e e e e e
3.5 PRODIGY4.0’s Description Language PDL4.0)
351 PDLSYNax it v ittt it ittt ettt e e e e e
3.52 PDL Semantics: Matching ExpressionsinaState
3.6 Upgrading Domains FromPRODIGY2.0 o ittt i ittt e e e

4 Control Structure

4.1 The Basics

42 WhatIsaNode? i ittt e e
43 ChoosingaNode i it e e e e e
44 ChoosingaGoalt e e e e e
45 ChoosinganOperator i i i i ittt e e e e e e e e
4.6 Choosing a Set of BindingsfortheOperator

47 ApplyinganOperator e e

48 Backtracking e e e e e e e e e e e e e e
49 AnExampleinthe Extended-STRIPSDomain

5 Control Rules

50 ComtrolRuleSymtaxttt ittt it it ettt e
5.2 The DecisionProcedureviaControlRules
5.2.1 Control RulesforChoosingaNode
522 Control Rules forChoosingaGoal
5.2.3 Control Rules for ChoosinganOperator
524 Control Rules for ChoosingBindings
5.2.5 Control Rules for Deciding Between Applying or Subgoaling
53 MetaPredicates e
54 WrtingYourOwnMeta-Predicatesc.00oe.....

6 Using PRODIGY
6.1 Imtroduction i i e e e e e e e e e
62 LoadingPRODIGY . « . & v v vt v it et ettt et et e e
63 PlannerCommands v ittt it e e e e e e e e
6.3.1 (domain ’}<domain-name>)ttt
632 (load-=domaim) i i it i e e e e e e e e e e
6.3.3 (problem ’<problem-name>)ttt e e .
634 (run) e e e e e e e e
6.3.5 (output-level <valued)ttt uunenennnnn.
64 PlannerFlags. i e e e e e e e e e e e
65 TheTraceFacility ittt ittt

7 Debugging Techniques
7.1 DebuggingaDomainttt
72 OtherDebuggingTechniquesttt e nnennn.

8 Advanced Features
81 ProblemSpaces i e e e e e e
82 ImermuptHandling i ittt it it i
821 HowitWorks i i i ittt ittt ettt et i e
822 GeneratingSignals e e e
8.2.3 Summary of Functions for Signal Creationand Handling
8.3 Dependency-Directed Backtracking,

9 Abstraction in PRODIGY
9.1 Towerof Hanoi i i it i it it i ittt e et e e
92 AbstractioninPlanning e e e e e e e
9.3 Working with AbstractioninPRODIGY4.0
94 AnExample e e e e e e

10 The Prodigy System
10.1 The OrganizationoftheFilest it iuneenn.

102 The Componentsof aDomain en..
103 Thelmplementation it ittt ittt e e e

11 Answers To Some Frequently Asked Questions
12 Acknowledgements

A PRODIGY as an Integrated Architecture

B PRODIGY4.0’s Description Language (PDLA4.0)
C The Extended-STRIPS domain

29
29
29
29
29
31
31
31
32
32
33

35
35
37

38
38
39
39
39

41
42
42
43

45
45
47

47
49
52
54
55

L 4

1 Introduction

PRODIGY is a domain-independent problem-solving architecture used primarily as a testbed for research
in planning, machine learning, and knowledge acquisition. Although PRODIGY could be employed as a
theorem prover or an expert system, it is primarily intended to be used as a general planner. In particular,
the PRODIGY architecture is well suited for:

1. A basic means-ends analysis nonlinear planner in high-level, symbolic domains.

2. A tool for exploring the space of planners in complex and unusual domains (via domain-oriented
control rules and other adaptations).

3. Atestbed for machine leaming research, primarily speed-up leaming (EBL, analogy, abstraction, etc.),
but also leaming at the knowledge-level (experimentation), and interactive knowledge acquisition
(see Appendix A for an overview of these mechanisms).

Points two and three are important: PRODIGY provides a platform for research in planning and leaming
that eliminates the need for each researcher to start from scratch and design her or his own planning system.
Although PRODIGY does not address certain issues (such as representing uncertainty), it can be used as an
initial model, to aid in the design or serve as the basis for a more complex planner. PRODIGY is a powerful
and well-engineered system. One of our main concems is to make PRODIGY a usable system.

PRODIGY has been applied to many different domains: robotic path planning, the blocksworld, an
augmented version of the STRIPS domain, multirobot task planning, matrix algebra multiplication, discrete
machine-shop planning and scheduling, process planning, computer configuration, logistics planning, and
several others.

1.1 PRODIGY4.0

The current version of the PRODIGY problem solver incorporates several features with respect to previous
versions. PRODIGY4.0 is a nonlinear problem solver allowing full interleaving of goals. It works with a set
of goals, as opposed to the top goal in a goal stack, as PRODIGY2.0 does. Improving the matcher efficiency
has been also a major effort of the project. The multi-level abstraction planning capability is fully integrated
with the problem solver. In addition, PRODIGY4.0 provides interruption handling, implements a simple form
of dependency-directed backtracking, and allows multiple problem spaces.

1.2 How to Use This Manual

Section 2 contains a very simple example of how PRODIGY solves a problem. This section is a good
introduction to how the system works. Its subsections introduce the rest of the manual. Section 3 shows
how to represent domain knowledge, including how to define operators and inference rules. Section 4
describes PRODIGY’s control structure in detail, showing exactly how the search proceeds. Section 5
explains how to use control rules to guide the search, and how to write them.

To run the example from Section 2, skip the sections mentioned above and go directly to Section 6.
Sections 6.2 and 6.5 describe how to load and run the system, and how to use the trace produced by it.
Section 7 gives some hints on how to debug a domain.

Section 8 contains some additional features of PRODIGY4.0. Section 9 gives an overview of the
abstraction module, that allows PRODIGY to do hierarchical planning in new domains. Section 10 provides
information about how the system files are organized, and how to load a domain.

Section 11 provides answers to frequently asked questions. Appendix A provides an overview of
PRODIGY ’s leaming components. Appendix B summarizes the syntax of PRODiGY4.0’s description Language
(PDLA.0). Finally, Appendix C contains a sample domain, the extended-STRIPS world, from which some of
the manual examples have been taken.

2 PRODIGY in a Nutshell

Simply stated, PRODIGY searches for a sequence of actions that transform an initial state (the current state)
into a final state (the goal state). To illustrate how PRODIGY works, in this section we will step through the
process of PRODIGY solving a simple problem. The problem is taken from the familiar blocksworld domain
described in many introductory Al textbooks (such as [Nilsson, 1980, Rich and Knight, 1991]). The domain
consists of an idealized robot arm, a table, and blocks, that can be manipulated by the robot arm. First, we
will define the blocksworld domain and the specific problem to be solved. Then we will look at a brief
description of the trace produced by the problem-solving episode in order to introduce PRODIGYs control
structure.

2.1 Defining a Domain

The domain theory (or “domain” for short) specifies the legal actions that can be performed in terms of
operators. Although PRODIGY is used for planning in many domains, some juite complex, we use here a
pedagogically simple domain, the blocksworld. In this domain (see Figure 1), there are only four operators:
PICK-UP, PUT-DOWN, STACK, and UNSTACK. PICK-UP and PUT-DOWN are used for picking blocks
up from the table and putting them down on the table. UNSTACK and STACK are analogous, but are
used for picking up and putting down blocks on other blocks. In addition to operators, the domain theory
specifies the legal inferences that can be made in terms of inference rules. In our domain, there is a single
inference rule for inferring that the arm is empty (represented by the predicate (arm-empty)) when the
robot arm is not holding any block, and for retracting (arm-empty) when it has a block in hand. In this
particular world, a robot can only PICK-UP or UNSTACK a block if it is not already holding another block
(i.e. if the predicate (arm-empty) is true).

Each operator and inference rule has a precondition expression that must be satisfied before the operator
can be applied and an effects list that describes how the application of the operator changes the world.
Variables that appear in both parts can have types, constraining the objects that can match them.

For example, the operator STACK in Figure 1 specifies that a block can be stacked if the robot is holding
it and the block on which it is to be stacked is clear (i.c., has nothing on top of it). The type declarations
in the preconditions specify that both blocks must be instances of the type OBJECT and that they must be
different. The effects-list indicates that after the operator is applied the robot is no longer holding the block
and the block undemeath is no longer clear. In addition, the block that was just put down is now clear and
it is on the bottom block. The syntax used for operators and inference rules is covered in more detail in
Section 3.

Notice how an operator specifies many effects, and the parameters enable it to apply in a range of
situations. For example, STACK can be used to stack any two blocks. When PRODIGY uses operators for
planning, though, it specifies values for the parameters, so it can reason about the new state created by
applying it. An operator with all its parameters specified, as in <stack blockA blockB> which stacks a
particular block on another, is called an instantiated operator, and is usually written in angle brackets.

(OPERATOR PICK-UP
(params <ob1>)
(preconds

((<ob1> 0BJECT))

(and (clear <obi>)
(on-table <od1>)
(arm~empty)))

(effects

O

((del (on-table <ob1>))
(del (clear <ob1>))
(add (holding <ob1>)))))

(OPERATOR UNSTACK
(params <ob> <underobd>)
{preconds

((<ob> Object)

(<underob> Object))

(and (on <ob> <underod>)
(clear <obd>)
(arm-empty)))

(effects
O
((del (on <ob> <underob>))
(del (clear <ob>))
(add (holding <od>))
(add (clear <underod>)))))

(1SFERENCE-RULE INFER-ARNENPTY

(params)
(preconds

QO

(- (exists ((<ob> OBJECT))
(holding <odb>))))

(effects
O

((add (arm-empty)))))
Figure 1: Blocksworld Domain Theory.

DIIC QUALITY INSPECTED 1

(OPERATOR PUT-DOWE
(params <ob>)
(preconds
((<ab> QBJECT))
(holding <ob>))
(effects
QO
((del (holding <ob>))
(add (clear <ob>))
(add (on-table <obd>)))))

(OPERATOE STACK
(params <ob> <underob>)
(preconds
((<ob> Object)
(<underob>
(and OBJECT (diff <ob> <underod>))))
(and (clear <underob>)
(holding <ob>)))
(effects
O
((del (holding <ob>))
(del (clear <underod>))
(add (clear <ob>))
(add (on <ob> <underod>)))))

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification e

Cco®Rl

R

By

Dis{r-ibutio‘ar

Availabiiity Codes

Dist

jA-1

Avail and/or
Spectal

Statement A per telecon Chahira Hopper

WL/AAAT
WPAFB,0H 45433

NWW 8/10/92

(setf (current-problem)
(create-problem
(name sussman)
(objects (blockA blockB blockC object))
(state (and (on-table blockAd)
(on~table blockB)
(on blockC blockA)
(clear blockB)
(clear blockC)
(arm-empty)))
(goal (and (on blockA blockB)
(on blockB blockC)))))

Figure 2: Example Blocksworld Problem.

2.2 Specification of a Problem

Once the domain has been specified, problems are presented to PRODIGY by describing an initial state and a
goal expression to be satisfied. In the example in Figure 2, often known as Sussman’s anomaly, the goal
is to build a tower of the three blocks blockA, blockB and blockC, with blockA on top and blockC on the
bottom. In the initial state blockA and blockB are on the table, and blockC is on top of blockB. Since the
syntax for the goal statement is a logical expression, multiple goals can be expressed as a conjunction.

2.3 The Goal Tree

PRODIGY solves a problem by searching for a sequence of operators that transform the initial state into a
final state that satisfies the goal expression. It does this by means-ends analysis, which means that it will
pick a goal that is not yet true and attempt to find an operator that would make it true. The preconditions of
this operator then also become goals, and the process is repeated, until all the goals either have operators
attached or are true, yiclding a plan.

One structure that helps to follow PRODIGY's problem-solving behaviour is the goal tree, which is a tree
whose nodes are the goals and operators considered by PRODIGY during problem solving. In this tree, a goal
is linked to the opemors that PRODIGY considers using to achieve the goal, and an operator is in tum linked
to the subgoals corresponding to the operator’s preconditions. Figure 3 shows the goal tree that PRODIGY
generates in solving our example, Sussman’s Anomaly. The two top-level goals appear under the root node
at the top of the figure, and must both be solved for the problem to be solved. The operator node for <stack
blocka blockb> appears as a child of the left goal node, (on blocka blockb), because PRODIGY uses
that operator to achieve the goal. Its preconditions are satisfied, in tumn, by achieving the two goals (clear
blockb) and (holding blocka) simultaneously.

Notice that the goal node (clear blockb) has been greyed out. This is because the goal is already
true when PRODIGY tries to achieve it — in fact, for this reason PRODIGY does not bother to create the node.
Some of the greyed nodes are goal nodes, meaning that they are true when they need to be achieved, and
some are operator nodes, meaning that all the preconditions of the operator are true when they need to be
achieved. These nodes thus mark a successful termination of the goal tree.

In general, in order to tell which goals will be true when PRODIGY tries to achieve them, it is necessary
to know what other operators PRODIGY has already applied. This information cannot be represented in the
goal tree, so we need to consider the problem solving trace to see the whole picture.

(on blocka blockb) (on blockb blockc)

'

<stack blocka blockb> <stack blockb blocke>
(holding blocka) (clear blockc) (holding blockb)

<pickup blocka>

(clear blocka)

Figure 3: The Goal Tree Generated by PRODIGY4.0 for Solving Sussman’s Anomaly.

24 The Problem-Solving Trace

A trace of PRODIGY solving Sussman’s anomaly is shown in Figure 4. Each decision that PRODIGY makes
during problem-solving is shown by a line in the trace, with the exception of decisions about uninstantiated
operators. The decisions together form a structure called the search tree, which PRODIGY uses to backtrack
efficiently. Each line in the trace corresponds to a node in the search tree . The line begins with the depth
of the node in the search tree, followed by a label for the node, and a short description.

As problem solving develops, the system expands the goal tree from Figure 3, and so each goal node
or instantiated operator node in the search tree can be mapped to a node in the goal tree. The indentation
of a line in the trace corresponds to the depth of the equivalent node in the goal tree. In addition to the
information in the goal tree, PRODIGY makes decisions about the order in which to apply the operators. These
decisions are lines in the trace showing instantiated operators printed in upper case (e.g line corresponding
to n16), and these lines represent applied operator nodes in the search tree.

We now give a detailed description of the trace in Figure 4. The user initiates problem-solving by typing
(run) at the Lisp prompt. First, the objects that are specific to the problem to be solved are created, in this
case, the three blocks. Then PRODIGY creates a special operator, called *£inish#, whose preconditions are
the top-level goals and whose sole effect is to add the goal (done). In addition, PRODIGY applies all the
inference rules that can be applied to the initial state.

At node n5, PRODIGY begins working on the goal (on blocka blockb), which is the left of the
two top level goals in the goal tree shown in Figure 3. The only action available to achieve this goal is
stacking blocka on blockb. This then gives rise to a new subgoal, holding blocka, which is a precondition
of the STACK operator. PRODIGY then works through the left side of the goal tree, coming to the operator
<unstack blockc blocka> at node n15. Note that neither PUT-DOWN nor STACK would work, since
they lead to a goal loop. Take PUT-DOWN for example. One way to make blocka clear is to put it down.

+ (run :output-level 3)
Creating objects (BLOCKA BLOCKB BLOCKC) of type OBJECT

2 n2 (done)

4 n4 <+*finishs>

5 nb5 (on blocka blockb) [1]
7 a7 <stack blocka blockb>
8 n8 (bolding blocka) [1]

10 n10 <pick-up blocka>

11 ni1 (clear blocka) [1]

12 n12 put-down ...goal loop with node 8
12 n13 stack ...goal loop with node 8

13 n16 <unstack blockc blocka> [2]

14 n16 <UNSTACK BLOCKC BLOCKA> [1]

Firing apply/subgoal AVOID-APPLY-FOR-WROEG-GOAL deciding SUB-GOAL
16 017 (on blockb blockc)
17 ni9 <stack blockb blockc>

18 020 (clear blocke) [1]
20 n22 <put-down blockc>
21 n23 <PUT-DOWEN BLOCKC> [1]

22 n24 (holding blockb)

24 n26 <pick-up blockb>

25 n27 <PICK-UP BLOCKB>

26 n28 <STACK BLOCKB BLOCKC> [1]
27 n29 <PICK-UP BLOCKA>

27 n30 <STACK BLOCKA BLOCKB>
Achieved top-level goals.

Solution:

<unstack blockc blocka>
<put-down blockc>
<pick-up blockb>
<stack blockb blockc>
<pick-up blocka>
<stack blocka blockd>

Figure 4: Example Blocksworld Trace.

In order to do that the block has to be held, but (holding blocka) is the goal PRODIGY was trying to
achieve in the first place. We call this situation a goal loop. PRODIGY detects this failure and tries a different
operator. In this case UNSTACK is finally chosen at node n15 and as its preconditions are satisfied in the
initial state, the operator is applicable; in fact PRODIGY decides to apply it immediately, shown by the applied
operator node n16. Below this point in the trace, PRODIGY s internal state has been updated to reflect that
<unstack blockc blocka> was applied. For example, (holding blockc) is now true. Note that so
far in the trace at the end of each line referring to a subgoal or an operator application, there is a [1]. This
means that at each of those points PRODIGY could have considered a different altemative. In this example,
the altemnative corresponds to work on the other top-level subgoal, (on blockb blockc). !

At node n17 PRODIGY switches attention to the other top-level goal, (on blockb blockc), even
though (on blocka blockb) has not been achieved, because <stack blocka blockb> has not been
applied. This switch of attention is caused by a control rule, called avoid-apply-for-wrong-goal.
Control rules direct PRODIGY s decision at each point. When the control rule preconditions are satisfied, the
rule fires and selects, rejects, or prefers an altemative. The type of altemative depends on the node PRODIGY
is at. In this example, the rule guides PRODIGY to prefer working on goal (on blockb blockc) instead of
applying <stack blocka blockb>.

Once again, the system follows the goal tree from Figure 3, choosing the operator <stack blockb
blockc> at node n19 to achieve the goal. It works on (clear blockc), first of the preconditions of
this operator, and applies the operator <put-down blockc> immediately at node n23. This changes the
state again, so that <pick-up blockb> is also applied immediately at node n27. Having achieved the
preconditions of <stack blockb blockc> from node n19, it is applied and the second top-level goal (on
blockb blockc) is achieved.

Now PRODIGY switches attention back to the work remaining for the first top-level goal, the one on
the left of the goal tree. Since the goal (clear blocka) achieved by the operator application <unstack
blockc blocka> at node n16 has not been undone by the intervening work, and the other preconditions
are now true, the operator <pick-up blocka> chosen at node n10 is now applicable, and is applied at node
n29. Finally, <stack blocka blockb> from node n7 is applied at node n30, and both the top-level goals
are solved. The final plan listed is the sequence of nodes corresponding to operator applications, taken in
the order they were applied.

This trace summarizes the simple style of planning that PRODIGY performs under normal circumstances.
By default, this is a depth-first search algorithm which chooses operators and instantiations for them in
a left-to-right order. This would be very inefficient for most problems, were it not for the application of
control knowledge to guide the search. Control rules can be specified for every choice point that was shown
in the trace. The subject of control knowledge is discussed in more detail in Section 4.

3 Defining a Domain

We present in this section the language that can be used in defining PRODIGY domains. The power of
PRODIGY s problem solving engine is owed in part to the flexibility and expressibility of this representation
language.

As we saw in the previous section, in order to solve problems in a particular domain, PRODIGY must be
first given a specification of that domain, which consists of a type hierarchy for the entities of the domain,
a set of operators, inference rules, and search control rules. The PRODIGY system includes a variety of
additional capabilities to express domain knowledge that enhance its flexibility and usability. In this section,

1pRODIGY allows full interleaving of goals at each point of the search, which confers PRODIGY its nonlinear character. For more
on nonlinear problem solving we refer the reader to [Veloso, 1989].

7

we present both basic and advanced features of PRODIGY’s expressibility using examples from a domain
presented in detail in Appendix C. It is an extended version cf the STRZS [Fikes and Nilsson, 1971] domain.
A robot can move between rooms, and transport boxes from one room to another. Rooms are connected
through doors that may be locked and unlocked with keys.

3.1 Type Specification

Before we describe how to write operators for a domain, we need to specify the objects to which they can
be applied. In our robot domain, for example, the objects are the robots, the boxes, and the rooms with their
doors and keys.

The class or type of every object in a domain must be specified. The type hierarchy in PRODIGY forms
a tree structure, i.c., a type can only be 2 subtype of one other type. Each type in the hierarchy has a super
type and several subtypes, except for the root (called : top-type) that has only subtypes. A possible type
hierarchy for our robot domain is shown in Figure 5.

(ptype-of ROBOT :top-type)
(ptype-of ROOM :top-type)
(ptype-of DOOR :top-type)
(ptype-of OBJECT :top-type)
(ptype-of BOX OBJECT)
(ptype-of KEY OBJECT)

Figure 5: A Simple Type Hierarchy for a Domain with Robots, Boxes, Rooms and their Doors and Keys.

Any instances of types that are constant in a domain can be specified as such. For example, if a robot
Robby is the only robot in our domain, we could write:

(pinstance-of Robby ROBOT)

Some types have an infinite number of instances (such as the integers). Section 3.4.5 describes how to
specify these infinite types.

3.2 Operators and Inference Rules

Operators and inference rules share the same syntax, but their semantics are different. Operators should
be thought of as representations of actions that can produce changes in the state. Inference rules represent
deductions to be derived from the existing state. We use the term operator to refer to both operators and
inference rules unless we indicate otherwise.

Each operator has a precondition expression that must be satisfied in the state before the operator can
be applied. An operator also has a set of effects that describes how the application of the operator changes
the world. Precondition expressions are well-formed formulas in a typed first order predicate logic
encompassing negation, conjunction, disjunction, and existential and universal quantification. Each effect
is an atomic formula together with a particle that indicates if the formula should be added or deleted from
the state.2 In addition one can also include conditional effects that specify transformations to the world that
depend on the current state when the operator is applied, as we describe in Section 3.4.3.

The specification for an operator or inference rule also includes alist of variables that are to be considered
parameters. Parameters are the variables that you want the user interface to print out in the trace. (Often

Note that inference rules can delete atomic formulas from the state as well as add them. This is different from previous versions
of PRODIGY.

an operator may have many variables, and it is unnecessary to print them all out). Universally quantified
variables cannot be listed as parameters, since they will have multiple values.

For example, suppose that we want to define an operator PICKUP-OBJ, so a robot can pick up objects
that are next to it when its arm is not holding other objects. Figure 6 defines this operator. The figure
also includes an example of an inference rule to take advantage of the fact that the predicate connects is
symmetrical.

(OPERATOR PICKUP-OBJ (INFERENCE-RULE
(params <object>) CONNECTS-IS-SYMMETRICAL
(preconds (params <door> <roomi> <room2>)
((<robot> ROBOT) (<object> OBJECT)) (preconds
(and (arm-empty) ((<door> Door)
(next-to <robot> <object>) (<roc.l> Room)
(carriable <object>))) (<room2> Room))
(eftects (connects <door> <roomi> <room2>))
((<other-obj> (or OBJECT DOOR)) (etfects ()
(<other-obj2> (or OBJECT DOOR))) ((add (connects <door> <room2> <roomi>)))))

((del (arw-~empty))

(del (next-to <object> <other-obj>))
(del (next-to <other-obj2> <object>))
(del (next-to <robot> <object>))

(add (holding <object>)))))

Figure 6: Operator and Inference Rule from the Extended-STRIPS Domain.

Each variable in an operator or inference rule must be typed by associating a type specification with the
variable. If the variable is used in the precondition of the operator or inference rule, the type specification
must be given before the precondition list. If the variable is only used in the effect list, the type specification
must be given in the effects list. For example, the operator PICKUP-OBJ shown in Figure 6, has as
variables <object>, <robot>, <other-obj>, and <other-obj2>. The type specifications for <robot>
and <object> are given in the precondition list because they are used in the precondition expressions. Type
specifications for <other-obj> and <other-obj2> are given in the effect list because these variables are
only used in the effect list.

Type specifications are used to restrict the range of values that can be used as bindings for a variable.
For example, if the variable <box> of an operator is typed as BOX, then <box> can only be instantiated with
objects declared to be of type BOX. Types are not the only way to restrict the bindings of a variable, as we
show in Section 3.4.2.

33 Specification of a Problem

A problem in PRODIGY is given by an initial state and a goal state specification. The description of an initial
state (or any state, for that matter) is composed of a list of objects and their corresponding types together
with a set of instantiated predicates (i.c. literals) that describes the configuration of those objects. The
objects in the state must be instances of the types that are declared in the domain. For example, given the
type hierarchy in Figure 5, an initial state can be:

(objects
(rooml room2 room3 ROOM)
(doori2 door23 DOOR)
(key23 KEY)

(box1 BOX))

(state
(and
(connects doori2 roomi room2)
(connects door23 room2 room3)
(inroom robby roomi)
(inroom key23 roomi)
(inroom box1l room3)))

The goal specification is an expression that must be satisfied by any goal state. It may contain variables,
and it can be quantified. For example, legal goals in this particular domain may be expressed as follows:

(goal (inroom box2 roomi))
(goal (~(inroom box2 roomi)))
(goal ((<box> BOX)) (inroom <box> roomi))

The first goal is true in any state where box2 is in roomi. The second goal is true in any state where
box2 is not in room1. The last goal is true in any state where some box is in room1. Notice that when there
is a variable in the goal expression, the variable must be typed.

A problem is created by specifying both the initial state and the goal description. Figure 7 illustrates
how a problem is defined in PRODIGY4.0.

(setf (current-problem)
(create-problem
(name test-prob)
(objects
{(room1 room2 room3 ROOM)
(door12 door23 DOOR)
(key23 KEY)
(box1 BOX))
(state
(and
(connects doori2 roomi room2)
(connects door23 room2 room3)
(inroom robby roomi)
(inroom key23 room1)
(inroom boxi room3)))
(goal (inroom boxi room1))))

Figure 7: An Example of Defining a Problem in PRODIGY4.0.

3.4 Beyond the Basics

This section describes in detail some of the most powerful components of PRODIGY’S description language,
namely: quantifiers, static properties, and conditional effects. It also describes how to make planning with
inference rules more efficient, and talks about the use of infinite types.

10

34.1 Quantification

Expressions in PRODIGY may contain quantifiers, both existential and universal. The type of the variables
within the scope of the quantifiers must be specified. For example, the following expression indicates that
there is a door in the room where the robot is. Notice that the quantifier can range over several variables.

(exists ((<room> ROOM) (<door> DOOR))
(and ((inroom robot <room>)
(dr-to-room <room> <door>))))

We can use a universal quantifier to express that all the doors are open as follows:

(forall (<door> DOOR)
(dr-open <door>))

It is possible to have nested quantifiers in an expression. For example, the following expression can be
used to specify that there must be keys for all the doors that are locked.

(forall (<door> door)
(or (unlocked <door>)
(exists (<key> KEY)
(is-key <key> <door>))))

Since it can be quite long to write down a complex formula containing many existentially quantified
variables, we allow a form of shorthand. Any existentially quantified expression that is not within the
scope of a negation can be abbrieviated as a conjunction. Thus the expression below can be abbreviated as
follows:

(exists ((<x> XTYPE)) (P <x>)) goes to: (((<x> XTYPE)) (P <x>))

Thus, the existential quantification of <x> is implicit.?

In PRODIGY, there is an implicit universal quantification of unbound variables in the effects list that
allows us to implement the "wildcard” feature that was employed by the original STRIPS system [Fikes
and Nilsson, 1971, Fikes et al., 1972]. Thus, one can easily specify multiple deletions. For example, in
Figure 6, <other-obj> isawildcard variable for operator PICKUP-OBJ. When the PICKUP-OBJ operator
is applied PRODIGY will delete all atomic formulas that match (next-to <object> <other-obj>).

34.2 Static Properties

The properties of the objects in a domain that never change are called static. This means that their truth
value remains the same in any state of the search space. Thus, a static property cannot appear as an effect
of an operator. For example, the fact that 2 < 5, or that a door connects two rooms are both static.

There are several ways to implement static properties in PRODIGY. One way is to represent them as
predicates and list them in the initial state. For example,

(is-key key12 door12)

3The scope of an implicitly quantified variable is inside the scope of an enclosing universally quantified statement iff all
occurrences of that variable are physically within the statement. Generally the use of existential shorthand is not used in such cases
to avoid confusion.

11

represents the unchangeable fact that key12 opens door12.
Another possibility is to represent static properties as predicates that can be deduced by inference rules.
For example, we can represent the fact that doors connect rooms in the state as follows:

(connects doori2 rooml room2)
(connects door23 room2 room3)

and we can use the inference rule CONNECTS-IS-SYMMETRICAL shown in Figure 6 to deduce some
new static properties. Thus, the literals:

(connects doori2 room2 roomi)
(connects door23 room3 room2)

can be added to the state by the inference rule. Section 3.4.4 describes in more detail the use of inference
rules for deducing static properties.

Some static properties cannot be implemented efficiently as predicates. Consider for example the
property that tests whether two objects are different. This property could be implemented as a predicate,
but in a problem with n objects we would have to create n? literals (one for each pair of different objects).
If the predicate ranges over an infinite number of objects, like “<”, it would not be reasonable to generate all
possible pairs. Rather, it would be nice to have the ability to generate on demand the particular pairs needed
for problem solving. In order to implement these static properties efficiently, PRODIGY allows user-defined
Lisp functions to represent them. In our example, we can define the function diff as follows:

(defun diff (x y)
(not (eq x y)))

The function retumns t or nil depending on whether x and y are different objects or not (nil indicates
that the formula is false.) This function may be used in operators to find out whether two PRODIGY objects
are the same or not. When a function like diff is used in an operator it restricts the values that variables in
the operator can take. The type specification of a variable constrains the range of values that it can take. A
function further restricts the range of values to those values that pass the test in the function.

For example, consider the operator that puts down a block next to another. Both of these blocks must
be different, since we cannot put a block next to itself. This is specified as follows:

(operator PUTDOWN-NEXT-TO
(params <object> <other-obj> <room>)
(preconds
((<object> OBJECT)
(<other-obj> (and OBJECT (diff <object> <other-obj>)))
(<room> ROOM))
(and (holding <object>)
(inroom <other-obj> <room>)
(inroom <object> <room>)
(next-to robot <other-obj>)))
(effects
O
((del (holding <object>))
(add (next-to <object> <other-obj>))
(add (next-to robot <object>))
(add (next-to <other-obj> <object>))
(add (arm-empty)))))

12

3.43 Primary and Conditional Effects

The effect list specifies the changes to be performed in the world when the operator is applied. These changes
can be unconditonal, or conditional to a particular state of the world (i.e., context dependent). Primary or
unconditional effects indicate unconditional changes, i.e., the formulas that are added to or deleted from
the state when the operator is applied. Conditional effects describe changes to the world also in terms of
formulas to be added or deleted to/from the state, but as a function of a particular state configuration.

A conditional effect is composed by a condition expression and a primary effect. The effect should be
added or deleted to the current state only if the condition expression is true when the operator is applied.
The types of the variables in the condition must be specified in the effects list of the operator. If there are
multiple ways to bind the variables in the expression, then there can be multiple formulas that are added or
deleted. As an example, consider the following altemnative representation for the operator PICKUP-OBJ. If
there arc any objects that were next to the box being picked up they will not be next to it any longer once
the operator is applied. This fact can be expressed as a conditional effect as follows:

(OPERATOR PICKUP-0BJ-2
(params (<object>))
(preconds
((<robot> ROBOT) (<object> OBJECT))
(and (arm-empty)
(next-to <robot> <object>)
(carriable <object>)))
(effects
((<other-obj> OBJECT))
((add (holding <object>))
(del (next-to <robot> <object>))
(if (next-to <object> <other-obj>)
((del (next-to <object> <other-obj>)))))))

When the operator PICKUP-0BJ~2 is applied, the robot is holding the object bound to the variable
<object>, and for any objects that satisfy the restrictions on <other-obj> the predicate (next-to
<object> <other-obj>) isdeleted. Notice that because <other-obj> is not defined by the preconditions
of the operator, it is treated as a universally quantified variable.

Conditional effects are considered for backward chaining. For example, the above operator will be
considered relevant if the goal (* (next-to <x> <y>)) arises.

344 Inference Rules

As we described in Section 3.2, inference rules are used in PRODIGY to derive facts from the existing state.
Given a state, there may be a large number of facts that can be deduced by firing inference rules. This
section shows how to write inference rules while keeping search efficient.

In Section 3.4.2 we show how to use the inference rule CONNECTS-IS-SYMMETRICAL to deduce
new static properties. So given the fact (connects doori2 roomi room2) in the initial state, we can
deduce that (connects doori2 room2 roomi).

Since this is a static property, it is always true during problem solving. So if the inference rule fires in the
initial state, it does so only once for each door. Otherwise, it would fire when the fact that a door connects
two rooms is needed during problem solving. In this case, we may need to fire the rule several times for
each door if its effect is needed in different parts of the search tree (for example after backtracking). Firing

13

an inference rule automatically in the initial state can be done in PRODIGY by marking the rule as eager.
Eager rules are used in a forward-chaining manner, and are fired automatically whenever the preconditions
are satisfied. Their effects are never used for backward chaining.

Now consider, for example, that the locations where the robot can move are specified by a grid. The
robot can move from location (z, y) to location (z, t) only if they are adjacent. We can write an inference
rule ADJACENT-LOCATIONS to deduce when two locations are adjacent. However, we would not like to
fire the inference rule for each possible pair of adjacent locations (imagine that we have a 100x100 grid!).
What we want is to fire that rule only when we need to know during problem solving if two particular
locations are next to each other. Firing inference rules only on demand can be done in PRODIGY by marking
the rule as lazy. Lazy rules are used for backward chaining, and PRODIGY subgoals on their preconditions
if they are not true.

CONNECTS-IS-SYMMETRICAL and ADJACENT-LOCATIONS are both rules that deduce static
properties of the state. But inference rules can also be used in PRODIGY to deduce non-static facts. Consider,
for example, the inference rule INFER-ARMEMPTY for the blocksworld, shown in Figure 1. Whether the
arm is empty or not depends on the current state, and therefore (arm-empty) is not static. Since we need
to subgoal on (arm-empty), the rule needs to be defined as lazy. Lazy inference rules are very similar to
operators: PRODIGY may choose a lazy inference rule to achieve a goal, and as a consequence may subgoal
on the preconditions of the inference rule. One difference between a lazy inference rule and an operator is
that when the operator becomes applicable, PRODIGY may choose to cither apply it or to subgoal on other
pending goals, whereas when the lazy inference rule becomes applicable, it is applied immediately.

Suppose now that INFER-ARMEMPTY is fired in state S when the arm is not holding any blocks.
Then, suppose that PRODIGY decides to apply the operator PICKUP to hold a block, which transforms S into
S’. Notice that (arm-empty) ceases to be true in S, so it should be removed from the state. In PRODIGY,
the consistency of the state is preserved automatically through a truth-maintenance system (TMS). The
TMS keeps track of all the inference rules (both eager and lazy) that are fired. When an operator is applied,
the effects of inference rules whose preconditions are no longer true are undone. Then, the TMS checks all
the eager inference rules and fires them if the preconditions become true.

In conclusion, inference rules may represent many possible deductions from a given state. In order to
implement them efficiently, PRODIGY fires them either automatically or on demand when they are specified
as eager or as lazy, respectively (the default is lazy). Figure 8 shows an example of each mede. A TMS
preserves the consistency of the state after an operator is applied.

(ISFERENCE-RULE INFER-ARM-EMPTY (INFERENCE-RULE
(mode lazy) COBNECTS-IS-SYMMETRICAL
(parans) (mode eager)
(preconds (params <door> <roomi> <room2>)
O (preconds
(- (exists ((<obj> OBJECT)) ((<door> Door)
(holding <obj>)))) (<room1> Room)
(effects (<room2> Room))
O (connects <door> <room1> <room2>))
((add (arm-empty))))) (ettects ()

((add (connects <door> <room2> <roomi>)))))

Figure 8: Eager and Lazy Inference Rules.

14

\

3.4.5 Infinite Types

If the user wants to specify a type with infinitely many elements, e.g. an integer or a real number, then
its class must be declared as an infinite type. The instances of an infinite type are not stored in the type
hierarchy. Instead, they are generated as needed.

When defining an infinite type in a domain, one must also specify a membership function that allows
the system to check for valid instances. As an example, suppose now that we want to specify the weight of
an object as a number. Then the Lisp function numberp can be used as membership function, and the type
can be defined as follows:

(infinite-type WEIGHT #’numberp)

When a variable in an operator is declared to have an infinite type, in addition to specifying the type of
the variable, we must also provide a function that generates bindings for this variable (or, if the variable is
bound from the right-hand side, simply checks those bindings). This function is part of the specification for
the variable, and it must retumn a list of values as the bindings generated for the variable. These values may
depend on the current state, or on the problem-solver meta-state.

For example, suppose that we want to modify the extended-STRIPS domain so that a robot can only pick
up an object whose weight is less than that of the robot. The weights of the objects and the robot may be
specified in the initial state as follows:

(is-weight robot 30)
(is-weight light-block 10)
(is-weight heavy-block 40)

Then the following is a modified operator PICKUP that takes into consideration the weight constraints.

(Operator PICKUP
(params <obj> <weight>)
(preconds
((<obj> OBJECT)
(<rob-weight> (and WEIGHT (gen-from-pred (is-weight robot <rob-weight>))))
(<weight> (and WEIGHT (gen-from-pred (is-weight <obj> <weight>))
(less-than <weight> <rob-weight>))))
(arm-empty)
(effects
O
((add (holding <obj>))
(del (arm-empty))))))

The function gen-from-pred is provided by PRODIGY to gencrate a list of values as the bindings for
a variable by using the information on the current state. In this example, in the case of <rob-weight>,
gen-from-pred returns the list of values {x} such that the literal (is-weight robot x) is true in the
current state. In the case of the variable <weight>, the function 1ess-than is also used in order to allow
only values that are smaller than the weight of the robot. Therefore this operator can be applicable when
<obj> is 1ight-block, but will not be applicable when <obj> is heavy-block.

Notice that if we use the function gen-from-pred to gencrate bindings for an operator, the values
it returns depend on the state at the time when the bindings are generated, i.c., the state when PRODIGY
subgoals on the preconditions of this operator. When the operator is actually applied, the state may have

15

changed. If the predicate used to generate the bindings (the argument of gen-from-pred) is not static, the
operator may be applied incorrectly, because the bindings were generated at subgoaling time, and cannot
be changed at applying time. For example, in the extended-STRIPS domain, the weight of the robot, 30,
camnnot be changed by any operator. But the weight of an object can be changed by applying some operators
(for example, by putting a block inside of a box). When we subgoal on the operator PICKUP, the weight
of the object is 10, therefore the binding for <weight> is 10. Suppose an operator is applied between the
time we subgoal on the operator, and the time we actually apply it, and the weight of the object is changed
to 35 as an effect of this operator. Then when we apply PICKUP, the binding for <weight> is still 10, so
the operator PICKUP is applied with <weight> bound to 10, although the robot cannot pick the object up
because the current weight of the object, 35, is greater than the weight of the robot.

According to this, a non-static predicate should not be used by gen-from-pred to generate bindings
for a variable. The following is a modified example of the operator PICKUP that works correctly even
when the weight of an object can be changed. Function gen-weight-less-than gencrates a list of
values as bindings for the variable <weight>. These bindings are the integers smaller than the value of
<rob-weight> but greater than zero. As (is-weight <obj> <weight>) is now a precondition, the
bindings for the operator will only be the correct ones at application time.

(Operator PICKUP
(params <obj> <weight>)
(preconds
((<obj> OBJECT)
(<rob-weight> (and WEIGHT (gen-from-pred (is-weight robot <rob-weight>))))
(<weight> (and WEIGHT (gen-weight-less-than <weight> <rob-weight>))))
(and (is-weight <obj> <weight>)
(arm-empty)))
(effects
0
((add (holding <obj>))
(del (arm-empty)))))

(defun gen-weight-less-than (weight rob-weight)
(let ((possible-weights nil))
(do ((w rob-weight (1- w)))
((zerop w) possible-weights)
(push w possible-weights))))

3.5 PRODIGY4.0’s Description Language (PDL4.0)

In Appendix B we list the regular expressions that describe PRODIGY4.0’s description language. The rest of
this section describes PDL's syntax and semantics from a more intuitive and practical point of view.

35.1 PDL Syntax
Here is a brief description of the syntactically legal sentences in PDL:

¢ Every atomic formula is a sentence.

16

o If F), F,, ...F, are sentences, then so is their conjunction, (AND Fy, F3,...F,)
and their disjunction, (OR Fy, F3, ...Fy)

e If F is a sentence then so is its negation, (~ F)
However, F must be cither an atomic formula or an existentially quantified statement.

¢ A type specification is either a type name, or a conjunction of types, or the set difference of two
types. A descriptor for a variable is cither a type specification or a type specification followed by
some functions that further restrict the variable values.

o If F is a sentence, <v}>, <»>, ..., <v,> are variables, and Dy, D,, ..., D, are descriptors for each
variable, then the following is a sentence,

(EXISTS ((<vy> D;) (<vp> D7) ...(<v,> D,)) SUCH THAT F)
as well as,
(FORALL ((<v;> D;) (<v3> D3) ...(<v,> D,)) SUCH THAT F)

3.52 PDL Semantics: Matching Expressions in a State

Each node in PRODIGY'’s search tree is associated with a state describing the world at that node. A state
consists of a set of literals that are known to be true of the world, given the sequence of operators and
inference rules which created that node.

A PDL expression describes a state if the expression can be matched in that state. Thus:

¢ An atomic formula matches iff the formula is present in the state.

¢ A conjunctive formula matches iff all of its conjuncts match.

¢ A disjunctive formula matches iff at lcast one of its disjuncts matches.

o The negation of an expression matches iff the expression does not match.

¢ An existentially quantified expression consists of a list of variables with their generators and an
expression. An existentially quantified expression matches iff there exists an assignment of values to
each of the variables that satisfy the generators, such that the expression matches the current state.

o A universally quantified expression consists of a list of variables with their generators and an ex-
pression. A universally quantified expression matches iff for all variable assignments that satisfy the
generators, the expression matches the state.

3.6 Upgrading Domains From PRODIGY2.0

PRODIGY2.0 was released a few years ago [Minton ez al., 1989b] and turned out to be a very popular version
of our system. Many users have implemented application domains for the old version. In this section we
give some pointers as to how to convert them into PRODIGY4.0.

Types must be added to all the variables and objects in the domain. A first step would be to create the
type hicrarchy, and then specify in all the operators and inference rules the type of the variables that they
use. Then, all the objects used in problems must be declared as instances of one of the types that are defined
in the domain.

Generators no longer exist when upgrading to PRODIGY4.0 (except as explained in Section 3.4.5). All the
functions that used to be in the precondition expression now become a part of the specification of variables

17

in the operator or inference rule. The code for the functions themselves must be changed too. They do not
return bindings or 'no-match- attempted any more. They should return only t or nil.

If you would like to see some examples, just compare the old version of the extended-STRIPS domain
with the new version in Appendix C.

4 Control Structure

In this section, we describe the control structure of PRODIGY in detail, starting with a review of the basics.
PRODIGY explores the search space by building a tree of nodes, and each type of decision made corresponds
to a different type of node. The following subsections explain PRODIGY’s nodes, decisions, and how
backtracking in the search tree occurs.

4.1 The Basics

A problem consists of an initial state and a goal expression (which can be an arbitrary PDL expression).
To solve a problem, PRODIGY must find a sequence of operators that produces a state satisfying the goal
expression.

PRODIGY uses means-ends analysis. Basically, in a backward chaining mode, given a goal predicate
not true in the current world, the planner selects one operator that adds that goal to the world. We say that
this operator is relevant to the given goal. If the preconditions of the chosen operator are true in the szare,
the operator can be agpplied. Applying an operator means executing it in the internal world of the problem
solver, which we refer to by world or state. If some of the preconditions of the operator are not true in the
state, they become subgoals, i.c., new goals to be achieved. A goal is pending if it is a precondition of a
chosen operator that is not true in the state. PRODIGY’s nonlinear character stems from working with the set
of pending goals, as opposed to just the top goal in a goal stack. ¢

The search tree is expanded by repeating the following steps: first compute the set of pending goals
and the possibly applicable operator, and decide either to apply that operator or choose one of the pending
goals to work on. If an operator was chosen as applicable, then apply it. If a goal was chosen, expand it, i.e.
choose an operator to achicve that goal, and choose bindings for the variables in the operator. This cycle
repeats until all the conjuncts in the goal expression are true, i.e. search terminates after creating a node
whose state satisfies the top-level goal expression. We call this a goal state. In other words, PRODIGY will
halt after finding the first solution to the problem that it encounters. Notice that there may be many goal
states that satisfy the goal expression given in the problem.

At each step in the decision phase, PRODIGY must choose between a set of candidates: nodes, goals or
an applicable operator, operators, or bindings. The decision process can be mediated by control rules, as
described in Section §.

Even though a candidate has been chosen at a decision point, PRODIGY can later return (backtrack) to
that same decision point and try choosing another candidate. The following sections describe each step in
the decision phase in detail.

4.2 WhatIs a Node?

When PRODIGY is solving a problem, it explores the scarch space by building a tree of nodes. Each node
represents and records a different decision made by the problem solver. To distinguish between the different

“This is one of the main differences between PRODIGY4.0 and PRODIGY2.0. For a detailed description of linear and nonlinear
planning see [Veloso, 1989].

18

types of decisions, PRODIGY uses different types of nodes, namely goal nodes, operator (or inference rule)
nodes, binding nodes, and applied operator nodes 5. All the node types have some common features such
as parent, children, and alternatives not explored yet, if any. In addition a goal node holds the goal chosen
at that point. An operator node is always a child of a goal node, and maintains the operator chosen, which
is not instantiated yet. A bindings node is a child of an operator node and contains an instantiation of that
operator. Finally, an applied operator node is a child either of a bindings node or of another applied operator
node, and records an operator application. For example, in the trace shown in Figure 4, node 24 is a goal
node that holds goal (holding blockb). Its child node, node 25, (not shown) is an operator node and
represents the choice of PICK-UP to achieve that goal. In tumn its child node 26 is a binding node that holds
the instantiation of PICK-UP <pick-up blockb> that may achieve the goal at node 24. Node 27 records
the application of that instantiated operator.

4.3 Choosing a Node

When PRODIGY is choosing a node, the default set of candidates includes all the nodes in the search tree that
have not been exhausted. A node is exhausted if PRODIGY has completely expanded the node, i.e., created
all possible children for that node. If no control rules are applicable, PRODIGY chooses the last node that has
been created, resulting in a depth-first secarch. However, this default strategy can be modified by adding
explicit control rules to guide the process of choosing a node. One can also select the search strategy as part
of the problem space (see Section 8.1 for an explanation of problem spaces). Breadth-first search is another
strategy provided.

The usual order in which nodes are expanded, i.c. the order in which decisions are made, is goal,
operator, bindings, and then either one or more operator application or goal again. However, at any point
PRODIGY may decide to explore a different path (we call this a change of context) and therefore break the
usual order. Depending on the type of the chosen node, a different action will be performed. Even when
a change of context occurs, the order of the nodes as read down any search path always conforms to the
above description.

44 Choosing a Goal

The first step in the search cycle is to determine which goal to work on. The candidate goals are the
unmatched preconditions of the instantiated operators that have been chosen during the search so far ©.
Once a goal is chosen, a goal node is created. All goals must eventually be achieved for the solution to be
reached, but the problem solver only focuses on one goal at a time. At any point during the search however
it may change its focus and decide to work on a different goal, allowing therefore the nonlinear character.
For example, in the problem presented in Section 2, PRODIGY starts working on the goal (on blockA
blockB), but at node 17, before that goal is achieved, the planner switches its attention to a different goal,
(on blockB blockC), therefore interleaving the plans that achieve each goal. Should nonlinear planning
have been disallowed, PRODIGY would have failed without finding a solution for this problem.

45 Choosing an Operator

After choosing a current goal, the planner chooses an operator to achicve that goal by looking at the effects,
including the conditional effects, of the operators. The default set of candidates consists of all operators

3PRODIGY2.0 used a single type of node.

‘At the beginning of search the goals come from the initial goal statement. The process of matching the preconditions of the
parent operator to produce subgoals is described in Section 4.6.

19

that are relevant to the goal. In fact, at this point PRODIGY considers both operators and inference rules. In
this section we refer to both by operato:s.

In the absence of control knowledge, operators are considered in the order stated in the domain specifi-
cation. Once an operator is chosen, an operator node is created.

An operator may have more than one effect that unifies with the goal. Unifying a relevant effect with
the goal produces bindings for some of the variables in the operator (we call this a partial set of bindings
for the operator), since the variables that occur in the effect of the operator will be bound. Each relevant
cffect produces a different set of partial bindings. Given a set of partial bindings, the next step is to expand
this set of bindings by matching the preconditions, as described below.

4.6 Choosing a Set of Bindings for the Operator

The process of choosing the bindings for an operator, referred to as ‘instantiation’, is one of the most
involved steps in the decision phase. The bindings indicate values for the variables that are existentially
quantified in the operator’s preconditions. ’

As indicated above, the process of determining the relevant effects of the operator generates (possibly
several sets of) partial bindings. For each set of partial bindings, PRODIGY calls the matcher and attempts to
match the operator’s preconditions. The bindings for all the variables in the precondition list of an operator
are generated at this time. However the bindings for variables in the effect list of an operator are generated
only when the operator is applied. (An exception is when we are subgoaling on a conditional effect: then
the bindings for the variables in the conditional effect are also generated when we subgoal on the operator.)
PRODIGY4.0’s matching algorithm is described in [Wang, 1992].

Once a set of bindings for the operator is chosen, a bindings node is created. This process also creates
subgoals corresponding to the preconditions unmatched under those bindings. These preconditions become
pending goals. Here PRODIGY checks to make sure that there is no goal cycle. A goal cycle occurs if one of
the new subgoals is subsumed (i.c., matched) by a goal already present in the current search path. A goal
cycle signals an infinite regress, and therefore if a goal cycle is detected, the bindings node is terminated
and declared a failure.

If the bindings were chosen for an inference rule, and the rule is applicable, the problem solver will
apply it immediately. If the rule is not applicable, its unmatched preconditions will be new subgoals, as in
the operator case.

Let us consider an example from the blocksworld domain defined in Section 2. The UNSTACK operator
in figure 9 is taken from that domain. At node 11 in the example problem described in Figure 4 the goal
is (clear blockA) and in the state blockC is on blockA, and both blockA and blockB are on the table.
UNSTACK is one of the relevant operators that is considered, ® and it generates three alternatives, <unstack
blockA blockA>, <unstack blockB blockA> and <unstack blockC blockA>, as shown below:

?Variabies within the scope of a universal quantifier are not included in the bindings, since they may have more than one value.
'PUTDOWN and STACK are also relevant, but they lead to a goal-loop since (holding blockA) is one of their preconditions.

(OPERATOR UNSTACK
(params <ob> <underob>)
(preconds
((<ob> Object)
(<underob> Object))

(and (on <ob> <underob>)
(clear <ob>)
(arm-empty)))

(effects
O
((del (on <ob> <underob>))
(del (clear <ob>))
(del (arm-empty))
(add (holding <ob>))
(add (clear <underod>)))))

Figure 9: Blocksworld UNSTACK Operator.

BINDINGS SUBGOALS

1. (<ob> blockA)(<underob> blockA) (ON blockA blockA)
(CLEAR blockA)
(ARM-EMPTY)

2. (<ob> blockB)(<underob> blockA) (ON blockB blockA)
(ARM-EMPTY)

3. (<ob> blockC)(<underob> blockA) (ON blockC blockA)
(ARM-EMPTY)

The alternatives are generated as ‘ollows: <underob> is bound to blockA during the process of
determining that the operator is relevant. As the operator type information specifies that <ob> is of type
OBJECT, the matcher generates the three alternative bindings. Attempting to match the preconditions
determines the subgoals for each of these candidates.

4.7 Applying an Operator

Once an operator has been completely instantiated, if all of its preconditions are satisfied, the operator can
be applied. Note, however, that just because an instantiated operator can be immediately applied does not
guarantee that it is always best for solving the global problem. (For example, consider the case where the
goal is to be holding blockA but the robot is holding blockB. When the subgoal (arm-empty) arises, it
is a bad idea to STACK blockB on blockA, even though that instantiation of STACK may be immediately
applicable.)

At the point when all the preconditions are satisfied, a decision has to be made between applying the
operator or continue subgoaling. If the decision is to subgoal, a new goal to work on has to be chosen,
as described in Section 4.4. If the decision is to apply an applicable operator, an applied-operator node is
created, and the operator is applied. The operator considered to be applicable is the last chosen operator not
applied yet in the current search path. Note that we can apply several operators in sequence by repeatedly
choosing them in successive cycles.

21

Applying an operator means performing its effects into the current state. Therefore the set of pending
goals needs to be updated after these changes in the state. The problem solver also checks if any eager
inference rules may be applied and applies them if so. If some inference rules fire, the state is updated and
the problem solver checks again for applicable eager inference rules. This process is repeated unt:l no more
changes occur, since these inference rules can be fired in a chain.

Once an operator is applied, PRODIGY checks to make sure that there is no szate cycle. A state cycle
occurs if the new state is equivalent to a state higher up in the tree (at one of the node’s ancestors). If a state
cycle is detected, the child node is terminated and declared a failure. ?

4.8 Backtracking

PRODIGY’s search space can frequently be very large. The problem solver successively chooses a goal,
operator and bindings. Any of these decisions can be wrong, in which case backtracking will be necessary.
PRODIGY backtracks by returning to a node that it has already visited and choosing an altemnative not explored
yet. Backtracking can occur due to the default depth-first selection of nodes, or due to a user-defined node-
selection rule. (In the latter case the term ‘backtracking’ may not be completely appropriate, but we’ll use
it anyway.)

This process is illustrated in our original example from Section 2. At node 12 PRODIGY makes an
incorrect selection of operator to achieve (clear blockA) that leads to failure (a goal loop) at node 12.
In fact PRODIGY returns to node 11 one more time before it finds the right operator, UNSTACK.

4.9 An Example in the Extended-STRIPS Domain

To further illustrate PRODIGY s control structure and its nonlinear character we present now an example from
the extended-STRIPS domain. In this domain there is a set of rooms connected through doors. A robot can
move around between the rooms carrying or pushing objects along. Doors can be locked or unlocked. Keys
to the doors lay in rooms and can be picked up by the robot. The set of operators include going to be nextto
objects, going through doorways, pushing objects to rooms, picking up objects and carrying them around,
and opening, closing, locking and unlocking doors. Appendix C contains the definition of this domain.

Consider Figure 10 where in (a) we show the initial state and in (b) the goal statement of an example
problem from this domain. Rooms are numbered at the comer of their picture. The problem solver must
find a plan to reach a state where door34, connecting room3 and room4, is closed, and the agent hero is next
to box3.

Figure 11 shows PRODIGY4.0’s problem solving trace for this problem. Node 29 is worth remarking.
At that point in the search, PRODIGY has two altemnatives. The first one is to apply the operator <GOT0-0BJ
BOX3 ROOM4> immediately, as it becomes applicable when the robot enters roomd4 (at node 28), and
therefore achieve the first goal (next-to robot box3). The other altemative is to subgoal on the other
goal (dr-closed door34) which became a goal when door34 was opened at node 27. PRODIGY chooses
to work on the first altemative, applying <GOT0-0BJ BOX3 R0OOM4>. Note that this is the default strategy.
However it leads to a failure, as after achieving (next-to robot box3) the robot has to retumn back to
close door34 at node 35 where the problem solver detects a state loop. PRODIGY recognizes that it was in
the same state before, and backtracks to node 29 (it is the first node it encounters where there was some
alternative not tried yet). At that point it chooses the correct ordering, and postpones applying the operator
after achieving the goal (dr-closed door34).

%If there exists a solution that involves s state cycle, then there must also exist a shorter solution that does not involve a state
cycle.

(inroom robot roomi) (inroom boxi room3) (and (dr-closed door34)
(inroom box2 room3) (inroom box3 roomd) (next-to robot box3))
(dr-open door12) (dr-open doori3)

(dr-closed door34) (dr-closed door24)

(a) Initial State (b) Goal Statement

Figure 10: Problem Situation in the Extended-Strips Domain. The goal statement is a partial specification
of the final desired state: the location of other objects and the status of other doors remain unspecified.

Note that if PRODIGY had been searching in its linear mode, it could not have found a solution for this
problem due to the occurrence of the state loop. 1©

5§ Control Rules

As PRODIGY attempts to solve a problem, it must make decisions about which operator to use and which
subgoal to pursue. These decisions can be influenced by control rules for the following purposes:

1. To increase the efficiency of the problem solver’s search. Control rules guide the problem solver
down the correct path at the decision points where they apply so that solutions are found faster. (Not
all decision points are typically guided by control rules.)

2. To improve the quality of the solutions that are found. There is usually more than one solutionto a
problem, but only the first one that is found will be retumed. By directing the problem solver’s attention
along a particular path, control rules can express preferences for solutions that are qualitatively better
(e.g., more reliable, less costly to execute, etc.).

PRODIGY’s reliance on explicit control rules, which can be leamed for specific domains, distinguishes
it from most domain-independent problem solvers. Instead of using a least-commitment search strategy,
for example, PRODIGY expects that any important decisions will be guided by the presence of appropriate
control knowledge. If no control rules are relevant to a decision, then PRODIGY makes an arbitrary choice. If
the wrong choice is made and costly backtracking is necessary, an attempt may be made to leamn the control
knowledge that must be missing (this is done by PRODIGY 's EBL mechanism, not discussed here). PRODIGY s
‘casual commitment’ strategy assumes that for any decision with significant ramifications, control rules will
be present; if they are not, all the alternatives are equally good.

PRODIGY4.0’s search algorithm described in the previous section, involves several choice points, to wit:

¢ Choosing the node to expand next from the set of open nodes;
o Choosing a goal to work on from the set of pending goals;

194 solution could have been found if state loops had been allowed. However it would have been a non-optimal plan, since the
robot would have gone first next to box3, then to door34 to close it, and finally next to box3 again.

23

s (run :depth-bound 50 :output-level 3)

2 n2 (done)

4 n4 <sfinish*>

§ nS5 (next-to robot box3)
Firing select op ONLY-GOTO-0BJ selecting GOTO-OBJ
Firing select binding rule GOTO-0BJ-ROOM

7 a7 <goto-obj box3 rooms>

8 n8 (inroom robot room4)
Firing reject operator ONLY-PUSH~-BOX-THRU-DOOR1 PUSH-THRU~DR
Firing reject operator ONLY-CARRY-BOX-THRU-DOOR CARRY-THRU-DR
Firing reject binding rule GO-THRU-LOCKED-DR

10 n10 <go-thru-dr door34 room3 room4>

11 ni1 (dr-open door34) [2]
13 ni3 <open-door door34>
14 n14 (next-to robot door34) [1]
Firing select op ONLY-GOTO-DR selecting GOTO-DR
16 n16 <goto-dr door34 room4> [1] ...goal loop with node 8
16 n17 <goto-dr door34 room3>
17 ni8 (inroom robot room3)

Firing reject operator ONLY-PUSH-BOX-THRU-DOOR1 PUSH-THRU-DR
Firing reject operator ONLY-CARRY-BOX~-THRU-DOOR CARRY-THRU-DR
19 n20 <go-thru-dr doori3 room1 room3> [1]
20 n21 (next-to robot doori3)
Firing select op ONLY-GOTO-DR selecting GOTO-DR
Firing select binding rule GOTO-DR-ROOM

22 n23 <goto-dr doori3 room1>

23 n24 <GOTO-DR DOOR13 ROOM1>

24 n25 <GO-THRU-DR DOOR13 ROOM1 ROOM3>
25 n26 <GOTO-DR DOOR34 ROOM3>

26 n27 <OPEN-DOOR DOOR34>

27 n28 <GO-THRU-DR DOOR34 ROOM3 ROOM4> [1]

28 n29 <GOTO-0BJ BOX3 ROOM4> [1]

29 n30 (dr-closed door34)

31 n32 <close~door door34>

32 n33 (next-to robot door34)
Firing select op ONLY-GOTO-DR selecting GOTO-DR
Firing select binding rule GOTO-DR-ROOM

34 n35 <goto-dr door34 room4> ...applying leads to state loop.

27 n28 <GO-THRU-DR DOOR34 ROOM3 ROOM4> [1]
28 n37 (dr-closed door34)
30 n39 <close-door door34>
31 n40 <CLOSE-DOOR DOOR34>
31 n41 <GOTO0-0BJ BOX3 ROOM4>
Achieved top-level goals.

Solution:

<goto-dr doori3 roomil>
<go-thru-dr door13 roomi room3>
<goto-dr door34 room3>
<open-door door34>

<go-thru-dr door34 room3 room4>
<close~-door door34>

<goto-obj box3 room4>

Figure 11: Example Trace in the Extended-Strips Domain.

24

¢ Choosing an operator from the set of relevant operators to achieve a particular goal;
¢ Choosing a set of bindings in order to instantiate the chosen operator;
¢ Deciding to apply an applicable operator or to continue subgoaling.

Decisions at all these choices are taken based on user-given or leamed control rules to guide the casual-
commitment search. Control rules can select, reject, or prefer certain alternatives to reduce the exponential
explosion in the size of the search space. Each control rule has left-hand side conditions testing applicability
and a right-hand side indicating whether to select, prefer, or reject a particular candidate. In this section we
will describe the different types of control rules in PRODIGY4.0 and we also present some examples for each
type. Further examples can be found in Appendix C and in the domains provided with PRODIGY4.0.

5.1 Control Rule Syntax

Each control rule has a name, left-hand side conditions testing applicability, and a right-hand side indicating
whether to SELECT, REJECT, or PREFER a particular candidate. The left hand side of the control rule is
written in a subset of PDL (see Section 3.5) that only allows the uses of and, or, and not. The predicates
in the left hand side of control rules are called meta-predicates. Meta-predicates are used to reason about
the meta-state of the planner (e.g., the goal that the planner is currently working on, the current operator
being considered, etc.). Almost any combination of and, not and or, and is valid. However not cannot be
used with meta-predicates that serve as generators. Meta-predicates and generators are further described in
Section 5.3.

Appendix B includes the syntax for control rules. When writing your own control rules it is helpful to
look at examples from other domains, such as those shown in this section and Appendix C.

5.2 The Decision Procedure via Control Rules

In general, to make a control decision, PRODIGY4.0 first applies the selection rules to select a set of candidates
(nodes, goals, or operators). Usually this set is smaller than the default set generated when there are no
select rules; sometimes a single choice is selected. Next, rejection rules further filter this set by eliminating
candidate decisions that would lead to problem solving failure. Control decisions for bindings work in
a different way, as it will be explained in Section 5.2.4. Finally, preference rules are used to choose the
best altemnative from the set of candidates. Preference rules can optimize problem-solver performance
(i.c. reduce search), or optimize solution quality. The remaining alternatives may later be explored if the
preferred one leads the problem solver to a failure (rejected candidates are never reexamined).

5.2.1 Control Rules for Choosing a Node

the default search strategy in PRODIGY4.0 is depth first, this default can be changed to breadth first search
by setting the flag :search-default to :breadth-first (see section 6.4). node selection, rejection and
preference rules can be used to override the defaults, although they are seldom used in PRODIGY4.0.

the following is an example of a select node control rule that can be used for breadth first search instead of
setting the flag :search-default. The meta-predicate oldest-candidate-node tests whether <node>
is the oldest node created (see Section 5.3).

(Control-Rule breadth-first-search
(IF (oldest-candidate-node <node>))
(THEN select node <node>))

5§22 Control Rules for Choosing a Goal

Goal selection, rejection, and preference rules can be used to guide goal decisions in PRODIGY4.0. At cach
such decision point, PRODIGY first applies the goal selection rules to select a set of candidate goals. If none
of these rules fires, then the set of all the pending goals is selected as the set of the candidate goals. The
rejection rules are used to further reject some candidates from the set of candidate goals.

It is important to remember that when PRODIGY rejects some goals, it is rejecting these goals for the
particular node it is at (Section 4.3 discusses more about nodes). That is, when PRODIGY expands this node,
it will only subgoal on the goals from the final set of candidate goals, and not on those that are rejected.
The remaining goals will have to be achieved further down in the search tree, since all of the pending goals
must eventually be achieved somewhere along the solution path.

The following rule is a prefer goal control rule in the blocksworld domain. In a problem in this domain
where the goal is to build a stack of blocks, PRODIGY should try to subgoal on the bottom part of the stack
first according to this prefer rule. The right-hand side of the rule means prefer to establish one of the on
relations (on <y> <z>) over the other on relation.

(Control-rule prefer-right-goal
(IF (and (candidate-goal (on <x> <y>))
(candidate-goal (on <y> <z2>))
(true-in-state (clear <x>))))
(THEN prefer goal (on <y> <z>) (om <x> <y>)))

523 Control Rules for Choosing an Operator

Operator selection, rejection, and preference rules can all be used in PRODIGY4.0. Operator selection rules
are fired first to gencrate a set of candidate operators. If no such rule fires, then all the operators relevant
to the given goal form the set of candidate operators. Secondly, operator rejection rules are used to further
reject some candidates from the set of candidate operators. Finally, preference rules are applied to choose
which operator to use first. The following rule is an operator selection rule in the blocksworld domain.

(Control-Rule select-op-unstack-for-clear
(IF (and (current-goal (clear <x>))
(true-in-state (on <y> <x>))))
(THEN select operator UNSTACK))

524 Control Rules for Choosing Bindings

Bindings selection, rejection, and preference rules can all be used in PRODIGY4.0. The detailed process of
matching these control rules is described in [Wang, 1992]. Basically, when generating appropriate bindings
for an operator, PRODIGY combines type constraints, functions, and static information in the operator, as well
as the bindings selection and rejection rules, and then it generates altemnatives according to these constraints.
Then binding preference rules are used to order the alternatives.

The following is a select bindings control rule for operator UNSTACK in the blocksworld domain. In
this control rule, <x> and <y> are variables that are bound to objects in the domain when the rule fires. <ob>
and <underob> are the name of variables in the operator UNSTACK. So for example, if we are instantiating
operator UNSTACK, when the goal we are trying to achieve is (clear B), and (on A B) is true in the
state, then variable <ob> is bound to A, and <underob> is bound to B.

(Control-Rule select-bindings-unstack~clear
(IF (and (current-goal (clear <y>))
(current-ops (UNSTACK))
(true-in-state (on <x> <y>))))
(THEN select bindings ((<ob> . <x>) (<underob> . <y>))))

5.2.5 Control Rules for Deciding Between Applying or Subgoaling

When PRODIGY is expanding a node where there are some applicable operators as well as pending goals,
the default behavior is to apply the applicable operator. However, control rules can be used to override this
default so that PRODIGY will continue subgoaling instead.

The following is such an example from the blocksworld domain. The goal is to build a tower of blocks,
and when the bottom of the tower is not built yet, by firing this rule PRODIGY will not apply operators to
build the top part of the tower.

(Control-Rule avoid-apply-for-wrong-goal
(IF (and (on-goal-stack (on <x> <y>))
(candidate-goal (on <y> <z>))
(applicable-operator (pick-up <x>))))
(THEN sub-goal))

5.3 Meta-Predicates

The left-hand side of the control rule is written in a subset of PDL, the same language as the preconditions
of our operators and inference rules, though different predicates are used. Meta-level predicates such as
CURRENT-GOAL and CANDIDATE-BINDINGS are used in control rules, whereas the predicates used
in operators and inference rules are domain-level predicates, such as AT, ON-TABLE and HOLDING. A
meta-predicate can be used as a generator of values for some of the variables it contains. For example,
CANDIDATE-NODE returns bindings for <node> if <node> is unbound.

A stock set of meta-level predicates is provided with PRODIGY, but the user can also write additional
ones as described in Section 5.4. Commonly used meta-predicates which are provided with PRODIGY4.0 are
shown below.

e (CANDIDATE-NODE <node>): Tests whether <node> is among the set of open nodes in the tree.
Can be used as a generator.

o (NEWEST-CANDIDATE-NODE <node>): Tests whether <node> is the most recently created candi-
date node. Can be used as a generator.

¢ (OLDEST-CANDIDATE-NODE <node>): Tests whether <node> is the oldest candidate node. Can
be used as a generator.

¢ (CANDIDATE-GOAL <goal>): Test whether <goal> is a candidate goal for this node. Used when
deciding on the current goal. Can be used as a generator for <goal>, which can be partially instantiated,
e.g. (CANDIDATE-GOAL (clear <x>)) is legal and will generate values for <x>.

¢ (EXPANDED-GOAL <goal>): Tests whether <goal> is already expanded along the current path. Can
be used to generate values for the variables in <goal>.

27

e (ON-GOAL-STACK <goal>): Tests whether the goal is on the goal stack - either expanded or a
candidate. Can be used to generate values for the variables in <goal>.

o (CURRENT-GOAL <goal>): Tests whether <goal> is the current goal. Can be used as a generator.
Can be used to generate values for the variables in <goal>.

o (CANDIDATE-OPERATOR <op>): Tests whether <op> is a member of the relevant operators being
considered at the current node. Can be used as a generator.

o (CURRENT-OPERATOR <op>): Tests whether <op> is the operator chosen at the current node. Can
be used as a generator.

¢ (CURRENT-OPS <ops>): Similarto CURRENT-OPERATOR, except that <ops> is a list of operators.

o (CANDIDATE-BINDINGS <bindings>): Tests whether <bindings> is a member of the candidate
set of bindings for the current node, goal and operator. Can be used as a generator for <bindings>.
<bindings> can be an association list of (operator-parameter . variable). Partial bindings are not
allowed.

e (TRUE-IN-STATE <expr>): Tests whether <expr> is true in the state. <expr> can only be a literal, or
negated literal, not any PDL expression. Can be used to generate values for the variables in <expr>,
but cannot be used as a generator for nodes or expressions.

o (KNOWN <expr>): synonymous with TRUE-IN-STATE.

e (APPLICABLE-OPERATOR <inst-op>): Tests whether <inst-op> is an applicable operator. Can be
used as a generator if <inst-op> is a variable or a list of the form (Operator-name <argl> <arg2> ...)

o (TYPE-OF-OBJECT <obj> <type>): Tests whether <obj> is of type <type>.

54 Writing Your Own Meta-Predicates

A user-defined meta-predicate is created by defining a function in the USER package. The function can take
nodes, goals, operators and/or bindings-lists as arguments, depending on the type of control rule it will be
used in. There are no restrictions on the function, but the user should be familiar with the relevant aspects
of PRODIGY4.0's internals. User-defined meta-predicates are usually put in file functions.lisp in the same
directory as the domain. Make sure you load fanctions.lisp before loading the domain.

Here is an example of a user-defined meta-predicate taken from the multirobot domain. x1 and y1 are
the x and y coordinates for location 1, respectively, and x2 and y2 are the coordinates for location 2. These
two locations are the same if x1 and x2, as well as y1 and y2, are identical.

(defun same-loc (x1 y1 x2 y2)
(and (= x1 x2) (= y1 y2)))

A meta-predicate may also be used as a generator of values for a variable (or several variables). For
example, the following meta-predicate can generate all the instances of a type. If obj is bound, it just
checks that obj is of type type by calling the predefined function type-of-object. If obj is unbound, it
generates a list of bindings for obj. The function all-the-instances retumns a list with all the instances
of a given type.

28

(defun type-of-object-gen (obj type)
(cond ((p4::strong-is-var-p type)
(error "~A has to be bound.~%" type))
((p4: :strong-is-var-p obj)
; ;generate bindings: notice how binding list is built
(mapcar #’(lambda (instance)
(1ist (cons obj instance)))
(all-the-instances type)))
(t (type-of-object obj type))))

For example, if blockA and blockB are all the instances of type BLOCK in a problem, (type-of--
obj-gen <block> BLOCK) retums (((<block> . blockA))((<block> . blockB))). Note that
the second argument, type has to be bound or the function will produce an error. 1!

6 Using PRODIGY

6.1 Imtroduction

Currently PRODIGY4.0 has a very simple interface. Domains and problems are created with a general
purpose text editor and loaded into Lisp with functions. This section discusses some PRODIGY interface
functions, shows how to control system behavior, displays a problem solution trace and describes the trace
information. : :

6.2 Loading PRODIGY

There are two different ways to load PRODIGY. The first one is by loading the file loaderlisp from the
system directory. The second altemnative is by loading prodigy.system from that same directory and then
typing (load-prodigy). The first altemative is preferred because it is faster. The second one will try
to compile the files as needed. Figure 12 shows how PRODIGY is loaded using loaderlisp. The variable
»WORLD-PATH* contains the directory where the domains are. If you want to use your own domains, you
should set *WORLD-PATH# to your domain directory.

6.3 Planner Commands

The following commands are Lisp functions that allow you to run PRODIGY and manipulate the problem
solving environment. Each subsection describes briefly a function and its arguments. These functions can
be used in the Lisp listener or included in Lisp routines.

63.1 (domain ’<domain-name>)

Loads the file domain lisp from the <domain-name> directory. The domain name is concatenated with the
global variable *WORLD-PATH+* to find the domain directory path. If no domain is given, the system will
print out the list of domains found in *WORLD-PATH+. Once the file is loaded the function (1oad-domain)
is called. domain has several keyword arguments:

1 Meta-predicates have 10 retarn either true, false, or a list of bindings. A list of bindings contains one element for each possible
way 10 instantiate the meta-predicate. And each of these elements contains s value for each unbound variable.

29

* (load "/afs/cs.cmu.edu/project/prodigy/versions.0/systen/loader"™)

; Loading stuff from #<Streas for file
"/ats/cs.can.edu/project/prodigy/versiond.0/system/.ibm-rt/load~domain. fasl">.

; Loading stuff from #<Stream for file
"/ats/cs.cmu.edu/project/prodigy/versiond.0/system/.ibm-rt/types.fasl"™>.

; Loading stuff from #<Stream for file
“/ats/cs.cau.edu/project/prodigy/versiond.0/system/.itm-rt/assertions.fasl">.

; Loading stuff from $<Stream for file
"/ats/cs.cam.edu/project/prodigy/versiond.0/systen/.ibm-rt/hier.fasl">.

33+ Prodigy is loaded.
T
* syorld-paths

"/ats/cs/project/prodigy/versiond.0/domains/"
* (setf svorld-paths "/usr/aperez/domains/")

"/usr/aperez/domains/"

Figure 12: Loading PRODIGY.

:load-domain (default t).
If this is nil, (load-domain) will not be called after loading the domain.lisp file.

:compile (default nil).

The matcher creates access functions to speed up the matching process. Compiling these functions increases
planning speed even more, but may slow the process of loading the domain. If this argument is nil, the
functions used in the matcher will not be compiled, the domain load will be faster, but the planner may run
slower. This may be useful to solve lots of small problems from different domains. The best thing is to test
it with your particular application.

:function (default t).
If this is true the functions.lisp file is loaded, if available.

These are some of the domains available in PRODIGY4.0:
blocksworld - the standard blocksworld domain

hanoi - Towers of Hanoi
logistics - transportation domain with package route planning
processp - aprocess planning domain

multirobot - multiagent planning domain

rocket - The Chinese Rocket problem; illustrates nonlincar planning
schedworld - a job shop scheduling domain

shopping - buying a sweater in Oakland, Pittsburgh

stripsworld - standard STRIPS domain

extended-strips - extension of the STRIPS domain

subway - includes the entire Pittsburgh subway!!

30

All these domains can be found in the domains directory of PRODIGY4.0’s top directory.

632 (load-domain)

This function sets up a domain in order to solve problems. It installs operators in the problem space, builds
functions for the matcher net, and does other useful things. You don’t need to call (load-domain) if
you loaded the domain with (domain), but otherwise you do. 1oad-domain retumns the number of CPU
seconds it takes to run 1oad-domain. It takes one keyword argument:!2

:compile (defaults to t)
same as for domain above.

633 (problem ’<problem-name>)

This function loads a specific problem. It looks for the file <*world-path*>/<domain-name>/probs/-
<problem-name>.lisp, after converting the name to lower case. If found, it loads it as a Lisp file.
Note that problem files must be loaded after the domain has been set up, cither by calling domain or
load-domain.

634 (run)

This function calls the planner to solve a problem once a domain and a problem have been loaded. The
values of its keyword arguments can be given for the current problem, or be the default values. Setting
these keywords using run will set the switches in the current problem space. !> run retumns a list of values
depending on the reason why the problem solver stopped. The car of the list returned represents an interrupt
handler message. See Section 8 for more details. The keyword arguments are as follows:

:current-problem (value: object of type problem, defaults to (current-problem))

specifies the problem to be run. Normally, (current-problem) will return the problem corresponding to
the last problem file loaded, but it can be changed (with setf) to switch between two or more problems in
memory.

:search-default (value: depth-first orbreadth-first, defaults to the value of the corresponding

problem space flag)
This can be used to switch between depth-first and breadth-first search strategies for problem solving.

:depth-bound (value: a number, defaults to the value of the corresponding problem space flag)

This controls the maximum depth of the search performed. If it is not specified it, the value is taken from the
problem space, which is initialized to 30. The default value is too low for many problems. Some problems
in the standard set need a depth of roughly 50 to be solved.

2There is another keyword argument, : problen-space, that defaults to the value of *CURRENT-PROBLEM-SPACE. It can be
used 10 switch between two or more problem spaces in memory, but is not implemented yet.

"Noudndisﬁnaionbetwunm&keywadmmu(duaﬁedinﬂxkseeﬁon)mdﬂnpmbkmspweﬂm(&cﬁon 6.4).

3

:max~nodes (value: a numberor nil, defaults to nil)
If this is a number, then it bounds the maximum number of nodes in the search tree that will be generated
before stopping. nil means that there is no bound.

stime-bound (value: a number or nil, defaults to nil)
If this is a number, then it limits the maximum run time in seconds that will be allowed before the problem
solving is stopped. nil means that there is no time bound.

:output-level (value: 0, 1,2 or 3, defaults to0 2)
This controls how much trace information is printed out during a run. If not specified as a keyword, the
value is read from the current problem space. This value can be set by calling the function (output-level
<value>). The values are interpreted as follows:

0 - Print nothing during problem solving.

1 - Only print the resulting plan.

2 - Print information about the nodes as they are expanded, and the resulting plan.
3 - Print everything in 2 along with which control rules are fired.

:compute-abstractions (value: tornil, defaults to t)
If this is true, when planning with abstraction, the abstraction hierarchy is computed automatically (see
Section 9).

6.3.5 (output-level <value>)

This function sets the amount of information that will be printed out during problem solving. See the
description of the :output-level flag of (run) above for more details.

6.4 Planner Flags

In addition to the above functions and options, there are some “problem space variables™ that you can set.
They will alter the way PRODIGY4.0 works, and become the default values when none are specified. 4
We have tried to provide reasonable defaults for these flags so that you do not need to bother with them
at first. run’s keywords allow you to override these values for a particular problem. To alter the flags
the function pspace-prop is provided as an accessor/modifier. For example, to find out if a search depth
bound is explicitly set, type (pspace-prop :depth-bound). To set a depth bound of 50, you would type
(sett (pspace-prop :depth-bound) 50). Using pset is sometimes easier: (pset :depth-bound
50) works just as well. The following flags are currently available in PRODIGY4.0:

:linear (values: t ornil, defaultisnil)

If this flag is not nil, PRODIGY4.0 will behave as a linear problem solver (no goal interleaving). This might
make it faster in some cases, and might make it fail in others, depending largely on the problem being
solved.

¥These variabies are stored as properties of the probiem space 5o when the capability of switching between a number of problem
spaces is fully implemented, you still will be able to have an individual setting for the flags. Note that & problem space is comprised
of a domain definition and problem(s). See Section 8.1 for more details.

K7

:depth-bound (values: nil or an integer, default is nil)
If this flag is a number, the search will be terminated if the search tree exceeds that depth. If itis nil, then
the depth bound will be read from the problem space or lastly set to 30.

:search-default (values: :depth-first or :breadth-first, defaultis :depth-first)
Default search type for the problem space if not specified in a call to run.

:excise~loops (values: t ornil, defaultis t)
If this is not nil, dependency-directed backtracking will be used to try to cut down the search space. See
Section 8 for more detail about dependency-directed backtracking.

:min-conspiracy-number (values: tornil, default is t)
If this is not nil, when there is more than one alternative set of bindings to use for an operator, one will be
chosen that leads to the smallest number of unsolved preconditions. 15

:use-abs-level (values: t ornil, defaultis t)

If this is not nil, the abstraction hierarchy w1 * ¢ used as a preference ordering on goals even when separate
abstraction levels are not being used. The hicrarchies are always gencrated when you load the domain - this
takes negligible time compared with cor .piling the matcher functions.

:random-behaviour (values: t ornil, default is nil)
If this is not nil, then when no more ordering control rules are left to choose between candidates at a
decision point, one will be chosen randomly. Otherwise they will be chosen in left-right order.

:multiple-sols (values: t ornil, defaultis nil)
If this is not nil, once a solution is found, the planner will ask the user if search should continue looking
for more solutions.

:print-alts (values: t ornil, defaultis nil)
If this is not nil, instead of printing out in the trace a number in square brackets to indicate how many
altematives are left, the altematives themselves will be listed.

:print-old-way (values: t ornil, defaultisnil)

If this is not nil, instead of printing the trace as an indented tree (see Figure 13 for an example), each node
is simply printed on a separate line as it is created. This provides fuller information, but is harder to take in
at a glance. May be useful for debugging - that depends on personal taste.

6.5 The Trace Facility

The trace facility prints out a trace of PRODIGY solving a problem. The trace is useful for viewing the
progress of problem solving for debugging purposes. The amount of information displayed is dependent
on the output level selected. This section explains the trace when the output level is 3. Figure 13 shows a
snapshot of the trace for the blocksworld problem presented in Section 2.

15This is s weakened version of “conspiracy search” [Elkan, 1989). A stronger one, which might appesr in the futare, would be
specified as a search type, replacing : depth-first.

33

+ (domain ’paperblocksworld)
Remove existing problem space: $<p-space: paper-blocksworld>?(y/n) y
Properties of 441 symbols removed.
Reading Meta predicate: on-goal-stack
Reading Meta predicate: candidate-goal
Reading Meta predicate: applicable-operator
Reading Meta predicate: current-goal
Reading Meta predicate: current-ops
Reading Meta predicate: true-in-state
Running load-domain.
0.1599998
+ (problem ’suss)
T
s (run :output-level 3)
Creating objects (BLOCKA BLOCKB BLOCKC) of type OBJECT
2 n2 (done)
4 n4 <sfinishs>
§ 05 (on blocka blockb) {1]
7 n7 <stack blocka blockb>
8 n8 (holding blocka) [1]
10 ni0 <pick-up blocka>

11 ni1l (clear blocka) [1]

12 n12 put-down ...goal loop with node 8
12 n13 stack ...goal loop with node 8

13 n15 <unstack blockc blocka> [2]

14 n16 <UNSTACK BLOCKC BLOCKA> [1]

Firing apply/subgoal AVOID-APPLY-FOR-WRONG-GOAL deciding SUB-GOAL
15 n17 (on blockb blockc)
17 n19 <stack blockb blockc>
18 n20 (clear blockc) [1]
20 n22 <put-down blockc>
21 n23 <PUT-DOWN BLOCKC> [1]
22 n24 (holding blockb)
24 n26 <pick-up blockb>
25 n27 <PICK-UP BLOCKB>
26 n28 <STACK BLOCKB BLOCKC> [1]
27 n29 <PICK~-UP BLOCKA>
27 n30 <STACK BLOCKA BLOCKB>
Achieved top-level goals.

Solution:

<unstack blockc blocka>
<put-down blockc>
<pick-up blockb>

<stack blockb blockc>
<pick-up blocka>
<stack blocka blockd>

(((:STOP . :ACHIEVE)

. #<APPLIED-OP-NODE 30 8<STACK [<DB> BLOCKA] [<UNDEROB> BLOCKB]>>)
#<UNSTACK [<OB> BLOCKC] [<UNDEROB> BLOCKA]>
#<PUT-DOVN [<0B> BLOCKC]> $<PICK-UP [<0B1> BLOCKB]>
#<STACK [<0B> BLOCKB] [<UNDEROB> BLOCKC]> #<PICK-UP [<DB1> BLOCKA]>
#<STACK [<0B> BLOCEA] [<UNDEROB> BLOCKB]>)

Figure 13: Example Blocksworld Trace.

4

Each line of the trace begins with a number that specifies the node’s depth in the search tree and then
the node identifier, beginning with n. The spacing between them reflects the depth of subgoaling from a
user-specified goal to the current goal. The next piece of information is the goal or operator currently being
worked on. Round brackets denote a goal — for example, (on blocka blockb). Angle brackets denote
an instantiated operator and its arguments — for example, <pick-up blocka>. If the instantiated operator
is capitalized, this means that PRODIGY is applying it at the current node, otherwise it means that it has been
chosen to achieve the goal mentioned in the line above it in the trace.

Normally, nodes for operators are not printed. However, if PRODIGY decides for some reason not to
follow up on an chosen operator, it prints it out along with the reason. For example, in node 13 in the trace
in Figure 13, PRODIGY is considering the operator STACK to achieve the goal (clear blockA). However,
every possible instantiation of STACK that could achieve this goal leads to a goal loop — that’s why the
operator node is printed along with the message goal loop with node 8.

Finally, the number in square brackets at the end of a line indicates how many altemnatives there were to
the choice that was made.

When the output level is 3, PRODIGY displays information about a control rule firing, including in some
cases which altemnatives where selected or rejected by the rule. In our example, a control rule fires at node
n16 to guide the decision between applying an operator and continue subgoaling.

When a solution exists for a problem, the solution steps are printed out. Finally the problem solver
retumns a list with the reason for the end of the search, the last node expanded, and a list of the operators that
lead to the solution.

7 Debugging Techniques

This section contains suggestions on useful techniques for debugging a domain and problems runs. First we
advise on good techniques to debug and develop a domain and then we suggest some available debugging
techniques.

7.1 Debugging a Domain

After a domain is defined, the user should test each one of the operators by itself. To do this, create an
initial state, where all the preconditons of the operator are true, and create different problems where you set
as goals the different effects of the operator. Test both negative and positive effects, and also conditional
effects if that is the case. After the problem run, check that the final state is the desired one, i.c. that all the
effects, regular and conditional, changed the state as expected. As an example, suppose you want to write
a domain for moving around by bus. There are buses, bus stops, and people, who ride, get on, and get off
the buses. In Figure 14 (a) we show the operator to get on a bus. It says that if a person and a bus are at
the bus stop, then the person gets on the bus. Notice that in this simple example we are not considering
the destinations of the bus and of the people (as an exercise, you can try to extend this domain to handle
destinations).

In Figure 14 (b) we show a wrong version of the operator to get off the bus. Let us see how to debug
this operator. We can create a problem where a person is on a bus, and to test this operator we will set as a
goal that the person is not on the bus anymore. In Figure 15 we show this problem, that can be solved as the
effect (del (on-bus <person> <bus>)) of operator GETOFF-BUS unifies with the negated goal with
bindings ((<person> John) (<bus> bus-67F)). The operator is applied succesfully as you can see in
Figure 16. However the user may now notice by looking at the state that John is not at any place anymore,
by calling the function (show-state) at the end of the problem solving episode, i.c. after the solution is

35

(OPERATOR GETON-BUS (OPERATOR GETOFF-BUS

(params <person> <bus> <bstop>) (params <person> <bus>)
(preconds (preconds
((<person> PERSON) ((<person> PERSON)
(<bus> BUS) (<bus> BUS))
(<bstop> BUS-STOP)) (on-bus <person> <bus>))
(and (at-person <person> <bstop>) (effects
(at-bus <bus> <bstop>))) O
(effects ((del (on-bus <person> <bus>)))))
O
((del (at-person <person> <bstop>)) (b)

(add (on-bus <person> <bus>)))))

(a)
Figure 14: (a) Operator to Get On the Bus, (b) Operator to Get Off the Bus.

retumed (bottom of Figure 16). This makes her realize that a location for the person has to be specified.
The operator GETOFF-BUS should then be rewritten as shown in Figure 17.

(setf (current-problem)
(create-problem
(name pghl)
(objects
(objects-are John Mary PERSON)
(objects~are bus-67F bus-61A BUS)
(objects~are Forbes Beeler Wilkins Murray BUS-STOP))
(state
(and (on-bus John bus-67F)
(at-person Mary Forbes)
(at-bus bus-67F Beeler)))
(goal (- (on-bus John bus-67F)))))

Figure 15: Problem 1: Testing the Operator GETOFF-BUS.

* (run)

Creating objects (JOHN MARY) of type PERSON

Creating objects (BUS-67F BUS-61A) of type BUS

Creating objects (FORBES BEELER WILKINS MURRAY) of type BUS-STOP

2 n2 (done)

4 n4 <+finishs>

5 n5 not (on-bus john bus-67%f)

7 n7 <getoff-bus john bus-67f>

7 n8 <GETOFF-BUS JOHN BUS-67F>
Achieved top-level goals.

Solution:
<getoff-bus john bus-67£>

s (show-state)

(#<AT-BUS BUS-67F BEELER> #<AT-PERSON MARY FORBES>)

.
Figure 16: Trace for Solving Problem 1 with the Domain as Specified in Figure 14, and Inquire About the
State of the World.

(OPERATOR GETQFF-BUS

(params <person> <bus> <bstop>)
(preconds

((<person> PERSON)

(<bus> BUS)

(<bstop> BUS-STOP))
(and

(on-bus <person> <bus>)

(at~bus <bus> <bstop>)))
(effects

O

((del (on-bus <person> <bus>))

(add (at-person <person> <bstop>)))))

Figure 17: Operator to Get Off the Bus - Correct Version.

7.2 Other Debugging Techniques

There is not a nice analysis facility for PRODIGY4.0 yet, but we will present here some hints that can help
you when debugging a problem solving episode. The trace facility is the most primitive technique, but it
is useful for determining whether the system is on track or has become hopelessly lost. The easiest way
to determine this is simply to keep an eye on the level of indentation, which tells you roughly how far
down PRODIGY has subgoaled (see Section 6.5 for more on the meaning of indentation). You can also check
periodically the goa’ "RODIGY is working on to see if it is trying to do something reasonable. If at any point
you think that thy' plar::r is lost, you should stop the planner and try to analyze the search nodes you think
are not correct.

The different ou.put levels allow you to get more information on the trace as needed. In particular level
3 will display the control rules that fired with the altemnatives that were selected, rejected, or preferred in
each case. You can see all the alternatives at each node by setting (pset :print-alts t) before problem
solving. This may give you an idea of why some decision is different from what you expect; it may be that
the expected alternative was not even considered. For example, if the relevant effects of an operator are not
correctly specified, the operator may not be considered relevant for a particular goal, when it should be.

To print the contents of a search node, you can do (pshow ’node n) where n is the node number.
pshow can be used with other arguments to display information about other types of objects. Figure 18
shows the information available on node 5 of the example trace in Figure 16. Of course the information
displayed depends on the type of node. In particular in this example the field introducing-operators
indicates which operator this goal is a precondition of. 16

The trace also indicates when the problem solver decided to abandon a search path, backtrack to the last
node with some alternatives left, and try one of them. For example, in the trace in Figure 11, the current
search path at node 35 fails because it leads to a state loop. PRODIGY has to backtrack up to node 28, the
last node where there was some other alternative. PRODIGY first decided at that point to apply <goto-obj
box3 room4>, but there was one other altemnative (shown by the [1] at the end of the line). PRODIGY goes
again to node 28 and tries the other alternative, to subgoal on (dr-closed door34), expanding node 37.
Backtracking is noted in the trace by both the break in the node number sequence, and by the decrease of
the search tree depth (the first number in each of the trace lines).

1The top-level goals are « asidered preconditions of the <#finishs> operstor.

37

s (pshov ’node 5)

#<GOAL-NODE 5 #<0N-BUS JOHN BUS-67F>> is a structure of type GOAL-NODE.
RAME: 5.

ABS-LEVEL: 0.

ABS-PARENT: NIL.

ABS-CHILDREN: NIL.

OPEN-NODE-LINK: NIL.

PARENT: #<BINDING-NODE 4 #<+FINISH+>>.

CHILDREN: (#<OPERATOR-NODE 6 #<OP: GETOFF-BUS>>).

PLIST: (:TERMINATION-REASON :EXHAUSTED :UNDER-DELETION NIL).
GOAL: #<ON-BUS JOHN BUS-67F>.

GOALS-LEFT: NIL.

APPLICABLE-OPS~LEFT: NIL.

INTRODUCING-OPERATORS: (#<BINDING-NODE 4 #<+FINISH*>>).
OPS-LEFT: NIL.

Figure 18: Description of Node 5 from the Trace in Figure 16.

8 Advanced Features

8.1 Problem Spaces

Probler spaces are a very general performance model in the context of problem solving. In PRODIGY a
problem space consists of a domain theory, control knowledge for the domain, and a set of problems. The
domain theory further consists of a set of operators and inference rules, and a type hierarchy for the objectsin
the domain. When a domain is defined, a problem space representing that domain is automatically defined.
When PRODIGY4.0 is solving a problem in a problem space, all the information relevant to planning, such
as the depth-bound, the output level, the current state of the problem, etc, is stored in a structure of type
problem space.

PRODIGY can have more than one problem space around at a time and switch between problem spaces
during planning. Thus it allows planning to take place in the middle of another plan. For instance, if an
agent, while planning in a problem space, is missing a piece of information, it can plan in a different problem
space to get that information, execute that plan, and continue planning in the previous problem space.

8.2 Interrupt Handling

Sometimes it is useful for the user to be able to call Lisp functions while PRODIGY4.0 is solving a problem.
This would allow, for example, a graphical representation of the state to be updated while planning takes
place, or would allow a controlling agent to interrupt the planner if the state were to change because of
external events. The signal mechanism provides a way for the user to have functions called as often as once
every time a new node is generated in the search space.

Figure 19 shows how the signal mechanism is used to implement the time-bound argument to run, and
can be used as a template. The time bound indicates the maximum run-time allowed before the planner
is stopped (see Section 6.3). A function called time-check is defined that takes one argument, a signal,
which is defined below, and retums the list (:stop :out-of-time) if PRODIGY4.0 should halt when the
function is called. time-checkis declared to PRODIGY by def ine-prod-handler; the argument : always
means that time-check should be called every time a new node is generated.

38

;3; This function stops Prodigy when time has run out.
(defun time-check (signal)
(declare (ignore signal))
(vhen (>= (get-internal-run-time) *stop-time#*)
;; Print out a nice message and clear up (not shown)
*(:stop :out-of-time)))

(define-prod-handler :always #’time-check)
Figure 19: A Handler Function to Stop PRODIGY4.0 when the Time Bound is Reached.

82.1 How it Works

How does the function defined in Figure 19 halt PRODIGY4.0? On every cycle of problem solving,
PRODIGY4.0 matches a list of signals with a list of signal handlers. The signals (for example always)
are small tagged pieces of data that may have been generated during the last cycle. The signal handlers
(such as time-check) are functions that take a signal as an argument. A signal handler is associated with
a signal, and whenever that signal is generated, PRODIGY4.0 will call the signal handler function with the
signal as its argument. You can create a signal handler, as we did in Figure 19, by writing a function
that takes a signal and then registering the function for a signal name. This is done with the function
define-prod-handler. There may be more than one signal handlers registered for a signal. In the
example, the function time-check is registered for the signal always. This means that it will be called at
least once every cycle.

If a signal handler ever retums a list that begins with : stop, then PRODIGY4.0 stops, and includes in its
return data the full list produced by the signal handler. Handlers can have useful side-effects even if they
don’t cause PRODIGY4.0 to stop.

822 Generating Signals

You may have several functions you would like to be called to handle different situations that arise while
PRODIGY4.0 is planning. This can be done by generating your own sigrals and registering handlers for them.
Suppose, for example, that a Lisp process is checking your calendar for events, and you want PRODIGY to
stop when it is time for lunch. One way to do this would be to have the calendar checker generate a signal
for every calendar event, of the type calendar-event, and to register a handler for these events, that tests
whether the event is for lunchtime and if so stops PRODIGY. This is done in Figure 20. The prod-signal
function generates a signal of a certain type, to which PRODIGY4.0 will respond within one problem solving
cycle. Its first argument is the name, or type, of the signal — in this case :calendar-event — and its
optional second argument is the signal data, in this case containing details about lunch.

Of course, you don’t have to use prod-signal in order to have handler functions called. The reason
that our first example (Figure 19) works is that PRODIGY4.0 behaves as if the call (prod-signal :always)
was made on every cycle.

8.2.3 Summary of Functions for Signal Creation and Handling
(prod-signal <SIGNAL-NAME> <SIGNAL-DATA>) Registers a signal with the given name and data.

(define-prod-handler <SIGNAL-NAME> <HANDLER>) Registers a handler for a given signal name.
The handler must be a function of one argument, which will be called once for every signal of the given

39

;3 this line appears in the calendar code:
(prod-signal :calendar-event ’(lunch with Brian at the 0))

;3; The handler function
(defun stop-for-lunch (signal)
(if (equal (car (second signal)) ’lunch)
(list :stop signal)))

;5> This registers the handler function for the correct events.
(define-prod-handler :calendar-event #’stop-for-lunch)

Figure 20: Installing a Handler Function to Stop PRODIGY for Lunch.

name. Handlers are wiped clean by calls to (1oad-domain). 17

(remove-prod-handler <SIGNAL-NAME> &optional <FUNCTION>) If the optional <FUNCTION> is
specified, removes that function from the list of handlers for the signal name. Otherwise, removes every
handler for the signal name.

(clear-prod-handlers) Removes every handler for every signal name. This function should be used
with caution, since some of PRODIGY4.0’s normal behavior is implemented using the signal mechanism.
However, since the handlers involved are re-defined on every call to (run), it is safe to call this function
before calling (run).

83 Dependency-Directed Backtracking

As the search space explored by PRODIGY4.0 can be very large, a simple dependency-directed backtracking
mechanism is implemented to prune parts of the search space. The main effect of dependency-directed
backtracking in PRODIGY4.0 is to remove binding nodes from consideration when a necessary subgoal
introduced by the node is later found to be unachievable. See [Blythe and Veloso, 1992] for a more
thorough description and an example of dependency-directed backtracking, and other heuristics used by
PRODIGY4.0 to reduce its search space.

9 Abstraction in PRODIGY

This section discusses an advanced feature of PRODIGY4.0, and should only be read
if you are already familiar with the basics of the system. The section can safely be
skipped on a first reading of the manual.

As you have seen, PRODIGY is a powerful and general problem solving tool. All too frequently however,
PRODIGY can get swamped in the details while solving a fairly complicated problem. Ideally, the planner
should concentrate on the harder problems first, ignoring the details, and then add the needed detail to
a general plan. This could save a lot of time, as well as probably lead to more intuitive plans from a
user’s point of view. This section describes PRODIGY s abstraction mechanism, which is designed to enable
PRODIGY to do just that. Much of the section borrows heavily from [Knoblock, 1991].

"Handlers are local to problem spaces, 50 def-prod-handler must be called in every problem space where you want the
handler to be defined.

40

There are many issues involved in using abstraction successfully in a planner, and we will not deal
with them here, except to point out some potential problems which can be avoided by the user. For more
information, look at [Nilsson, 1980, Rich and Knight, 1991] for an introduction, and [Knoblock, 1991] and
[Blythe and Veloso, 1992] for more technical details about abstraction in PRODIGY.

PRODIGY can use an abstraction hierarchy over the literals in a domain, and it can generate one
automatically given a particular domain and problem. It is relatively simple to get PRODIGY to work with
its own abstraction hierarchies. If, in your domain, you know which are the right things to focus on first,
you might want to try providing PRODIGY with a hierarchy, but you should also compare this with the ones
generated automatically.

The next part of this chapter provides an introduction to abstraction and abstraction hierarchies in
PRODIGY, using an example from the Tower of Hanoi domain. We then show how to use the abstraction
module in PRODIGY4.0 with a trace that uses the same example.

9.1 Tower of Hanoi

The Tower of Hanoi puzzle requires moving a pile of various-sized disks from one peg to another with the
use of an intermediate peg. The constraints are that only one disk at a time can be moved, a disk can only
be moved if it is the top disk in a pile, and a larger disk cannot be placed on a smaller one. Figure 21 shows
the initial and goal states of a three-disk Tower of Hanoi problem.

A B C) A B C

Initial State Goal State
Figure 21: Initial and Goal States in the Tower of Hanoi.

In the simplified domain specification used for the Tower of Hanoi, each disk is a different type and is
moved by a separate operator. Figure 22 shows the operator for moving disk 2 from one peg to another.

(pinstance-of disk2 DISK2)

(OPERATOR Move-disk2
(params <from> <to>)
(preconds ((<from> Peg)
(<to> Peg))
(and (on disk2 <from>)
(~ (on diskl <from>))
(- (on diskl <to>))))
(effects
QO
((del (on disk2 <from>))
(add (on disk2 <to>)))))

Figure 22: Operator for Moving Disk?2 in the Tower of Hanoi.

41

9.2 Abstraction in Planning

Abstraction is a technique used to focus the problem solver on the more important aspects of the problem
first, so it will only deal with other aspects once those are solved. In PRODIGY, as in many other systems,
we do this by forming a reduced model of the problem space, solving first a problem in the reduced model,
and then refining the plan in the reduced model into a plan in the ground space. The ground space contains
the complete specification of the problem space. A reduced model is formed by removing literals from the
operators. For example, in the Tower of Hanoi domain, one might remove every instance of (on disk1
<peg>) from the domain to simplify the 3-peg problem to the 2-peg problem.

The process of forming a reduced model can be repeated a number of times to form an abstraction
hierarchy, in which more literals are removed the higher one climbs the hierarchy. PRODIGY can form the
hierarchy itself — that is, it can decide which predicates to leave out from the model at any stage — or it
can work with a hierarchy defined by the user.

We describe planning with abstraction in detail for the case where there are only two spaces, namely the
ground space and the abstract space. A full hierarchy can be treated simply as a sequence of these cases.
The first step is to map the original problem, which is defined in the ground space, into the abstract space.
This is done by dropping from both the initial state and goal description every literal that is dropped in the
abstraction.

The second step is to solve the pranning problem in the abstract space, by the usual planning procedure.
Now, however, any reference to the dropped literals in the operators is ignored. This speeds up planning
by reducing the number of goals to consider, but may yield a plan that is incorrect at the ground space, for
instance a plan which tries to move disk2 even though disk1 is on top of it.

Finally, the abstract plan is refined to produce a plan in the ground space, if possible. PRODIGY uses the
abstract plan as a rough guide for searching in the ground space, but it allows the new subgoals that appear
when it adds back all the dropped predicates to be addressed in any order, to maintain the completeness of
PRODIGY4.0’s nonlinear search. More details can be found in [Blythe and Veloso, 1992].

In some cases, which are precisely defined in [Knoblock, 1991), hierarchical problem solving of this
kind can reduce the size of the search space from exponential to linear in the size of the solution. In other
cases it can slow it down. For this reason, it is very important to choose a good abstraction hierarchy for
abstract planning. When PRODIGY computes a hierarchy for a problem, it tries to guarantee that plans in the
abstract space will be refineable, although it does not always succeed.

9.3 Working with Abstraction in PRODIGY4.0

The functions for running PRODIGY without using abstraction, as described in Section 6, are also used
for running the system with abstraction. Two more functions are used, namely to run PRODIGY with an
abstraction hierarchy and to load an abstraction hierarchy.

The function (abs-1evel) describes the level of the abstraction hierarchy at which PRODIGY will begin
to form a plan. This is usually set to either 0 or nil. A setting of 0, which is the default, indicates the
ground space, where no abstractions are considered. A setting of nil indicates that the system should
choose the highest possible abstraction level to begin planning. Whenever PRODIGY begins planning with
an abstraction level greater than zero, it will refine a successful plan rather than just return it.

PRODIGY uses literal type signatures to represent the literals at an abstraction level. These consist of a
predicate name and a type for each argument of the predicate, for exampie (holding block). If a type
hierarchy exists, all the types must be of the lowest possible generality, i.e. they must correspond to leaves
in the type hierarchy.

By default, PRODIGY generates its own abstraction hierarchies to use when planning with abstraction,
but the function load-hierarchy can be used to specify a different abstraction hierarchy. This function

42

takes a list of lists of literal type signatures, with the intention that the first list defines the literals dropped
at the first level of abstraction, the second list those dropped at the second level of abstraction, and so on.
In addition, if you wish to use your own abstraction hierarchy, you must supply each call to the function
run with the keyword-value pair (: compute-abstractions nil) to prevent PRODIGY from computing a
hierarchy and replacing yours with it.

These function print-hierarchy can be used to inspect the hicrarchies generated. It prints out the
predicate type signatures associated with each level in descending order.

9.4 An Example

The example shown here corresponds the Tower of Hanoi problem with 3 disks. Without abstraction or
control rules, this problem is not solved within 5,000 nodes. When PRODIGY is running with abstraction, the
node labels in the trace specify the abstraction level before the node number (0 corresponds to the ground
space). In this trace the initial segment of each refinement has been omitted, since it is identical to the one
for more abstract plan. The line ... ;; refining <parent node>... has been added to show the
join.

<cl> (setf (abs-level) nil)

NIL

<cl> (run :depth-bound 50 :compute-abstractions t)
Creating objects (PEG1 PEG2 PEG3) of type PEG

2 n2-2 (done)
4 n2-4 <stinishe>
n2-5 (on disk3 peg2)

6 n2-6 move-diski ...no choices for bindings
6 n2-7 move-disk2 ...no choices for bindings
7 n2-9 <move-disk3 pegl peg2> [1]

7 n2-10 <MOVE-DISK3 PEG1 PEG2>
chieved top-level goals. (Abstraction level 2)

"

A

. i: refining n2-9...
6 n1-9 <move-disk3 pegl peg2>
7 ni-11 not (on disk2 pegl) [1]
8 ni-12 move-diski ...no choices for bindings
9 ni-14 <move-disk2 pegl peg3> [1])
10 ni-15 <MOVE-DISK2 PEG1 PEG3> [1]
11 n1-10 <MOVE-DISK3 PEG1 PEG2> [1]
12 n1-16 (on disk2 peg2)
13 ni-17 move~diskl ...no choices for bindings
14 n1-19 <move-disk2 peg3 peg2> [1]
14 n1-20 <NOVE-DISK2 PEG3 PEG2>
Achieved top-level goals. (Abstraction level 1)

. 3: refining n1-14...
9 n0-14 <move-disk2 pegl pegd>

10 n0-21 not (on diski pegt) [1]
12 n0-23 <move-diskl pegl peg3> (1]
13 n0-24 <MOVE-DISK1 PEG1 PEG3> [1]
14 n0-25 not (on diski peg3) [1]
16 n0-27 <move-disk1i peg3 peg2> [1]
17 n0-28 <MOVE-DISK1 PEG3 PEG2> [1)

18 n0-15 <MOVE-DISK2 PEG1 PEG3> [1]
19 n0-29 not (on diski peg2)
21 nC-31 <move-diskl peg2 peg3> [1]

43

22 n0-32 <MOVE-DISK1 PEG2 PEG3>
23 n0-10 <MOVE-DISK3 PEG1 PEG2> [1]
24 1n0-16 (on disk2 peg2) [1]

;; refining n1-19...

26 n0-19 <move-disk2 peg3 peg2>

27 n0-33 not (on diski peg3) [1]

29 n0-35 <move-diski peg3 peg2> (1]
30 n0-36 <MOVE-DISKi PEG3 PEG2> [1]
31 n0-37 not (on diski peg2)

33 n0-39 <move-diskl peg2 peg3> [1] ...applying leads to state loop.
a3 n0-41 <move-diski peg2 pegl>

34 n0~-42 <MOVE-DISK1 PEG2 PEG1>

35 n0~20 <MOVE-DISK2 PEG3 PEG2> [1]
36 n0-43 (on diskl peg2)

38 n0-45 <move-diskl pegl peg2> [1]
38 n0-46 <MOVE-DISK1 PEG1 PEG2>
Achieved top-level goals.

Solution:
<movs—~diskl pegl peg3>
<move-diskl peg3 peg2>
<move-disk2 pegl peg3>
<move-diski peg2 peg3>
<move-disk3 pegl peg2>
<move-diski peg3 peg2>
<move-diskl peg2 pegl>
<move-disk2 peg3 peg2>
<move-diskl pegl peg2>
<cl> (print-hierarchy)
3:
(DONE]
2:
(0N DISK3 PEG]
1:
(0¥ DISK2 PEG]
0:
{ON DISK1 PEG]

¥IL
<cl> (load-hierarchy ’(((on diskl peg) (on disk2 peg))
((on disk3 peg)(p4::done))))
:;: returns the abstraction hierarchy. Only two abstraction levels.

<c1> (run :depth-bound 50 :compute-abstractions nil)

33; Fov it takes 274 nodes to complete.

10 The Prodigy System

This section describes the organization of the files, the components of a domain, and the implementation
dependencies of the system.

10.1 The Organization of the Files

All the files containing PRODIGY and the domain are depicted in Figure 23. The top-level PRODIGY directory
contains two subdirectorics, domains and system. If you are using PRODIGY at CMU, you will probably find
the top level directory at /ats/cs/project/prodigy/version4.0. It will contain a few other files and
directories, which aren’t necessary for the system. Otherwise, the top level directory should be the value of
the variable *PRODIGY~-ROOT-DIRECTORY*.

The directory system contains saveral directories for the different modules of the system: planner,
abstraction, ... !* The system is aefined in a file called prodigy.system and the directory planner contains
all the files that compose the planner system. They are loaded cither by loading the file loader.lisp, or
altematively by loading prodigy.system and then typing (load-prodigy). All the domains are under the
directory domains. The variable *WORLD-PATH* contains the name of this directory. The Blocksworld
domain, for example, is one of its subdirectories. The subdirectory probs contains a file for each problem
in the domain.

The files that form the planner in PRODIGY are described in appendix C. The contents of the files
related to a domain are described below. Of course, you don't need to put the PRODIGY system under the
same directory as the domains. You can have the domains wherever you like, maybe in your own personal
directory. There is a way to tell the system where the domain you want to use is. We talk about it below.

prodigy

version2 version4.0
(*prodigy-root-directory?*)

README system gulde ofMains

(* system—directory') (*world-path*)
A/plarmer\abstraction logi tics blockSworld
matcher lisp gen-hiers lisp domafn. 1J.sp prdbs
search.lisp . functions.lisp
apply.lisp pl.lisp

Figure 23: The Files That Contain PRODIGY and the Domains.

10.2 The Components of a Domain

As we saw before, the files that describe the domain are in the directory that corresponds to that domain.
All the operators, inference rules and control rules of the domain are included in the file domain.lisp as
follows (an example of such a file is included in Appendix C):

Cumrently the directories available are planner and abstraction. Further modules, such as different leaming methods, case-
based reasoning, and knowledge scquisition, will be added as directories as the modules are added to the system.

45

(create-problem-space ’DOMAIN-NAME :current t)
(ptype-of TYPE1 :top-type)
ié;ype-ot TYPEm :top-type)
(Operator OPERATOR1 ...)
iééerator OPERATORn ...)
(Inference-Rule INFERENCE-RULEL ...)
ii;ference-kule INFERENCE-RULEp ...)
(Control-Rule CTRL-RULE1 ...)
ié;ntrol-nule CTRL-RULEq ...)
The file functions.lisp should contain all the functions you defined as follows:

(defun functioni ...)

(defun functionf ...)

The casiest way to load a domain in PRODIGY4.0 is using the function (domain ’<domain-name>).
It looks for a directory with the name you specified as a subdirectory of *WORLD-PATH+. However one
can also load the domain files just as normal Lisp files and call (1oad-domain) afterwards. Note that this
function should be called after any changes to a domain.

In summary, (domain ’<domain-name>) will load the following files:

¢ domainlisp, that should contain all the operators, inference rules and control rules of your domain.

o functionslisp, if it exists, that should contain all the functions and user-defined meta-predicates that
your operators, inference rules, and control rules use.

Besides all the above files, there is a subdirectory called probs (see Figure 23), that should contain all
the problems of your domain. Each problem should be in a file containing:

(setf (current-prodlem)

(create-problem

(name example)

(objects
(instancel instance2 typel)
R

(state
(and assertioni ... assertionn)
)

(goal (and goal-assertioni ...)
)

Section 3.3 gives an example of the description of a problem. If you type (problem ’example) to
Lisp, it will look for the file example.lisp in the probs directory, and load it. You can also just load the file
yourself using the Common Lisp 1oad function. It doesn’t matter. Note that problem files must be loaded
after the domain has been set up by calling either domain or load-domain.

10.3 The Implementation

PRODIGY is written in Common Lisp. PRODIGY is not a big space hog, but Common Lisp tends to be, so you
should have plenty of megabytes on your machine. Currently, the system is run in CMU Common Lisp on
the IBM-RT and in Allegro Common Lisp on the PMaxes, Sun workstations, and the Macintosh. We have
tried to keep the code as system independent as possible.

You should be able to run PRODIGY in another version of Common Lisp on a different machine with
only a few changes. The system directory contains two files for loading PRODIGY: prodigy.system
which uses the defsystem package and loaderlisp which does not. The directory structure will vary
from machine to machine, so you will need to change the variables that refer to directories, namely
PRODIGY-ROOT-DIRECTORY (the top-level directory), *SYSTEM~-DIRECTORY* (the planner directory)
and *WORLD-PATH* (the directory containing the domains).

The PRODIGY code is available for distribution. Write to the following address or send electronic mail
to prodigy@cs . cmu. edu to inquire about release forms and conditions:

The PRODIGY Project
School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3880

The PRODIGY system is advanced experimental software, fumnished on an ‘as is’ basis. Camegie Mellon
and the authors make no warranties of any kind regarding the software or its documentation, and shall not
be liable for direct or consequential damages resulting from the use of the software.

11 Answers To Some Frequently Asked Questions

Q. How do I start writing a domain in PRODIGY?
A. Below are seven suggested steps for creating a domain in PRODIGY:

1. Outline the problems you are trying to solve and solutions to the problems.

2. Create the primitives for the problem domain. These primitives are the physical objects in the system
(i.c., box, object, etc.) or the properties of these objects (i.e., locaticn, position, etc.).

3. Formulate several example problems and a step by step description of their solution in terms of the
primitives above. It might help to think about how you would teach a human apprentice this expertise.

4. Create the rules for each possible operation or deduction. These rules are the system’s methods for
changing state (stack, unstack, etc.) or making inferences (clear, etc.).

5. Test each individual rule on a trivial problem. This will insure that your individual rules work as you
expected.

6. Run more complex problems in the domain. This will test the interaction between the rules.

47

7. Add control knowledge to the system. Try to determine what makes one path preferred over another
and encode this information in the control rules.

Q. When should I use functions?

A. Fenctions are used to denote facts about the world that never change. They are especially useful for
information that can be computed more easily than the information can be stored (e.g. it is easier to check
that one number is smaller than other number by using a function than to store in the state a LESS-THAN
literal for every pair of numbers). (See Section 3.4.2.)

Q. What do functions return?
A. Functions retumn t, nil. In addition, functions used as generators for infinite type variables should return
a list of values. (See Sections 3.4.2 and 3.4.5.)

Q. What does control knowledge allow me to do?
A. Control knowledge allows me to 1) improve the efficiency of the problem solver and 2) improve the
quality of the solutions produced. (See Section 5.)

Q. How do I know where and when to add control knowledge to the system?
A. To determine where to add control knowledge can be a difficult problem. Some hints are listed below to
help with this task:

1. Look at a trace of the system solving a problem and try to detect a position where a bad goal, operator
or binding selection was made. Determine why that selection was made and write a general rule that
will make the correct selection.

2. Analyze the system’s final solution. If there is a better solution then try and determine how to improve
the solution using control knowledge. (See Section 5.)

Q. What if I add control knowledge and nothing changes?

A. First make sure you have saved your control rule changes in the file domain.lisp. Then make sure
you have reloaded the domain, cither by calling the domain function, or loading the domain file and then
typing (1oad-domain) to Lisp. This step is often left out by novices. Then you can see which control rules
fired by setting the output-level to 3 (call (output-level 3)). And you may trace the meta-predicates
to see why the control rules did not fire. Sometimes just checking the spelling of the predicates in the rule
will solve your problems: you may spend some time trying to figure out why (current-goal (inroom
robot <room>)) did not match when the goal was (in-room robot rm1).

Q. What if the system’s problem-solving behavior does not appear to make sense?
A. Find the point in the trace where the system’s behavior diverged from what was expected. Try to trace
the problem to a particular operator (Section 7). Carefully check that operator’s preconditions and effects.

48

Q. To whom do I send mail about bugs, problems, praises, etc.?
A. Mail correspondences to prodigy@cs . cmu . edu. For mail about bug reports please include the following
information:

1. The system version number.
2. Enough information to reproduce the problem. This includes:

(a) the domain file.
(b) the functions file.
(c) adetailed description of the problem including the error message.

(d) a procedure for reproducing the bug (the problem PRODIGY was solving, the flags that were
active, ...).

3. How to get in touch with you (electronic mail address and phone number).

12 Acknowledgements

We would like to thank all the other members of the PRODIGY project along the years for many helpful and
insightful discussions, namely Dan Kuokka, Ellen Riloff, Henrik Nordin, Hiroshi Tsuji, Daniel Borrajo,
Michael Miller, Santiago Rementeria, Nobuyoshi Wada, Yan-Bin Jia, José Brustoloni, David Rager, and
Masahiko Iwamoto. Thanks also to David Long for his help with I&TiX in the edition of this manual.

References

[Blythe and Veloso, 1992] J. Blythe and M. Veloso. An analysis of search techniques for a totally-ordered
nonlinear planner. In Proceedings of the First International Conference on Al Planning Systems, College
Park, MD, June 1992.

{Carbonell and Gil, 1990] J.G. Carbonell and Y. Gil. Leamning by experimentation: The operator refinement
method. In Machine Learning: An Artificial Intelligence Approach, Volume I1l. Morgan Kaufmann, San
Mateo, CA, 1990.

[Carbonell and Veloso, 1988] J.G. Carbonell and M.M. Veloso. Integrating derivational analogy into a
general problem-solving architecture. In Proceedings of the First Workshop on Case-Based Reasoning,
Tampa, FL, May 1988. Morgan Kaufmann.

[Carbonell ¢t al., 1990a) J. G. Carbonell, Y. Gil, R. Joseph, C. A. Knoblock, S. Minton, and M. M.
Veloso. Designing an integrated architecture: The PRODIGY view. In Proceedings of the Twelfth Annual
Conference of the Cognitive Science Society, 1990.

[Carbonell ez al., 1990b} J. G. Carbonell, C. A. Knoblock, and S. Minton. Prodigy: An integrated archi-
tecture for planning and leaming. In Kurt VanLehn, editor, Architectures for Intelligence. Erlbaum,
Hillsdale, NJ, 1990. Also Technical Report CMU-CS-89-189.

[Elkan, 1989] C. Elkan. Conspiracy numbers and caching for searching and/or trees and theorem proving.
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, Detroit, MI,
1989.

49

[Etzioni, 1990] O. Etzioni. A Structural Theory of Explanation-Based Learning. PhD thesis, Camegie
Mellon University, School of Computer Science, 1990. Also appeared as Technical Report CMU-CS-
90-185.

[Fikes and Nilsson, 1971] R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, 1971.

[Fikes et al., 1972] R. Fikes, P. Hart, and N. Nilsson. Leaming and executing generalized robot plans.
Artificial Intelligence, 3(4), 1972.

[Joseph, 1989] R.L. Joseph. Graphical knowledge acquisition. In Proceedings of the 4th Knowledge
Acquisition For Knowledge-Based Systems Workshop, Banff, Canada, 1989.

[Knoblock, 1990] C.A. Knoblock. Leaming effective abstraction hierarchies. In Proceedings of the Eighth
National Conference on Artificial Intelligence, Boston, MA, 1990.

{Knoblock, 1991] C.A. Knoblock. AutomaticallyGenerating Abstractionsfor Problem Solving. PhD thesis,
Camegie Mellon University, School of Computer Science, 1991. Also appeared as Technical Report
CMU-CS-91-120.

[Minton et al., 1989a] S. Minton, J. G. Carbonell, C. A. Knoblock, D. R. Kuokka, O. Etzioni, and Y. Gil.
Explanation-based leaming: A problem-solving perspective. Artificial Intelligence, 40:63-118, 1989.
Available as technical report CMU-CS-89-103.

{Minton ez al., 1989b] Steven Minton, Craig A. Knoblock, Daniel R. Kuokka, Yolanda Gil, Robert L.
Joseph, and Jaime G. Carbonell. PRODIGY2.0: The manual and tutorial. Technical Report CMU-CS-89-
146, School of Computer Science, Camegie Mellon University, Pittsburgh, PA, 1989.

[Minton, 1988] S. Minton. Learning Effective Search Control Knowledge: An Explanation-based Ap-
proach. PhD thesis, Camegie Mellon University, School of Computer Science, 1988. Also appeared as
Technical Report CMU-CS-88-133.

[Mitchell ez al., 1990] T. M. Mitchell, J. Allen, P. Chalasani, J. Cheng, O. Etzioni, M. Ringuette, and J. C.
Schlimmer. Theo: A framework for self-improving systems. In Kurt VanLehn, editor, Architectures for
Intelligence. Erlbaum, Hillsdale, NJ, 1990.

[Nilsson, 1980] N.J. Nilsson. Principles of Artificial Intelligence. Tioga Publishing Co., 1980.

{Pérez and Etzioni, 1992} M. Alicia Pérez and Oren Etzioni. DYNAMIC: A new role for training problems
in EBL. In D. Sleeman and P. Edwards, editors, Machine Learning: Proceedings of the Ninth Interna-
tional Conference (ML92). Morgan Kaufmann, San Mateo, CA., 1992. Extended version appeared as
Technical Report CMU-CS-92-124.

[Rich and Knight, 1991] E. Rich and K. Knight. Artificial Intelligence. Mc Graw Hill, New York, second
edition, 1991.

[Rosenbloom ez al., 1990] P. S. Rosenbloom, A. Newell, and J. E. Laird. Towards the knowledge level in
SOAR: The role of the architecture in the use of knowledge. In Kurt VanLehn, editor, Architectures for
Intelligence. Erdbaum, Hillsdale, NJ, 1990.

[Thompson and Langley, 1989] Thompson and P. Langley. An architecture for a leaming autonomous
agent. In Proceedings of European Workshop on Representation and Learning in an autonomous agent,
1989.

50

[Veloso and Carbonell, 1989] M.M. Veloso and J.G. Carbonell. Leaming analogies by analogy - the closed
loop of memory organization and problem solving. In Proceedings of the Second Workshop on Case-
Based Reasoning, Pensacola, FL, May 1989. Morgan Kaufmann.

[Veloso, 1989] M. Veloso. Nonlinear problem solving using intelligent casual-commitment. Technical
Report CMU-CS-89-210, School of Computer Science, Camegiec Mellon University, Pittsburgh, PA,
1989.

[Wang, 1992] Xuemei Wang. Constraint-based efficient matching in PRODIGY. Technical Report CMU-
CS-92-128, School of Computer Science, Camegie Mellon University, April 1992.

51

A PRODIGY as an Integrated Architecture

Arntificial intelligence has progressed to the point where multiple cognitive capabilities are being integrated
into computational architectures, such as SOAR [Rosenbloom ez al., 1990], PRODIGY [Carbonell er al.,
1990b], THEO [Mitchell et al., 1990], and ICARUS [Thompson and Langley, 1989]. Our goal is to build
a general purpose leaming and reasoning system that given basic axiomatic knowledge of a domain is
capable of becoming an expert problem solver. Our machine leaming approach starts with a general
problem-solving engine based on a possibly incomplete domain theory. The problem solver improves
its performance through experience by refining the initial domain knowledge and learning knowledge
to control the search procsss. Figure 24 presents a diagram of the PRODIGY architecture including the
problem solver and the different leaming components. This manual describes the basic problem solver.
For further references on PRODIGY we refer the reader to [Minton et al., 1989a, Carbonell et al., 19903,
Carbonell et al., 1990b). In this section we give an overview of the leaming components: 1°

STATIC -—
['

Control Domain
Knowledge Problem (Knowiedge /
\ | /

User :
Interface Abstraction
. PROBLEM
EBL SOLVER
Plan Deriv. | Multi- |/ Abstraction
Library Replay | Level Hierarchy
4
Derivation 1

T (st)| v [
!
. External
COHRE-—

Figure 24: The PRODIGY Architecture.

1*The modules described here have been implemented and tested in previous versions of PRODIGY. Only the abstraction generation
and planning module is currently available in FRODIGY4.0.

52

e ALPINE: An abstraction hierarchy generation module [Knoblock, 1990, Knoblock, 1991]. The
axiomatized domain knowledge is divided into multiple abstraction levels based on an analysis of the
domain. Then during problem solving, PRODIGY first finds a solution to guide the search for solutions
in more detailed problem spaces. The method for generating abstraction hierarchies was developed
by Knoblock, but the method for planning with abstractions is differeat from the one used in previous
versions of PRODIGY. See Section 9 for a more detailed description of this module.

o APPRENTICE: A graphical user interface that can participate in an apprentice-like dialogue, and
can both acquire domain knowledge or accept advice during problem solving [Joseph, 1989].

¢ EBL: An explanation-based leaming facility {Minton, 1988] for acquiring control rules from a
problem-solving trace. Explanations are constructed from an axiomatized theory describing both the
domain and relevant aspects of the problem solver’s architecture. Then the resulting descriptions are
expressed in control rule form, and control rules whose utility in search reduction outweighs their
application overhead are retained.

¢ STATIC: A method for leaming control rules by analyzing PRODIGY's domain descriptions prior
to problem solving. The STATIC program [Etzioni, 1990] produces control rules without utilizing
any training examples. STATIC matches EBL’s performance on some domains and exhibits one to
two orders of magnitude faster leaming rate. However, not all problem spaces permit purely static
leaming, requiring EBL to leam control rules dynamically.

¢ DYNAMIC: A method for learning control rules by analyzing both the problem space description
and a problem-solving trace [Pérez and Etzioni, 1992]. DYNAMIC integrates the use of examples to
pinpoint learning opportunities with static analysis of the problem space to generate control rules.

e ANALOGY: A derivational analogy engine [Carbonell and Veloso, 1988, Veloso and Carbonell,
1989] that uses similar previously solved problems to solve new problems. The problem solver
records the justifications for each decision during its search process. These justifications are then
used to guide the reconstruction of the solution for subsequent problem solving situations where
equivalent justifications hold true. Analogy, EBL, and static analysis are independent mechanisms to
acquire domain-specific control knowledge.

¢ EXPERIMENT: A leaming-by-experimentation module for refining domain knowledge that is in-
completely or incorrectly specified [Carbonell and Gil, 1990]. Experimentation is triggered when plan
execution monitoring detects a divergence between internal expectations and external observations.
The main focus of experimentation is to refine the factual domain knowledge, rather than the domain
knowledge. .

53

B PRODIGY4.0’s Description Language (PDL4.0)

rule
operator

inference-rule

params-list

var-spec
var-descriptor

constraint

pdl-expression

effects
effect
conditional-effect

mode
predicate

rule-name
type-name
instance
var-name

control-rule

restricted-pdl-exp
rhs-specification
select-spec
reject-spec
prefer-spec

candidate-type

start-state
goal-expression

operator | inference-rule | control-rule
(OPERATOR rule-name
(params params-list)
(preconds (var-spec®) pdi-expression)
(effects var-descriptor® effects))
(INFERENCE-RULE rule-name
mode
(params params-list)
(preconds (var-spec®) pdl-expression)
(effects var-descriptor”® effects))
var-name*
(var-name var-descriptor)
(AND var-descriptort constraint®) | (OR var-descriptor* constraint®) |
(~ var-descriptor* constraint®) | type-name
var-descriptor | lisp-function

(AND pdl-expression*) | (OR pdl-expression*) | (~ pdl-expression*) |
(FORALL var-descriptor pdl-expression) |
(EXISTS var-descriptor pdl-expression™) | predicate

(effect*)
(ADD predicate) | (DEL predicate) | conditional-effect

(IF pdl-expression effects)
(mode eager) | (mode lazy) | €
literal

id-name
id-name
id-name
<id-name>

(CONTROL-RULE rule-name
(¥ restricted-pdl-exp)
(then rhs-specification))
see Section 5.1
select-spec | reject-spec | prefer-spec | SUBGOAL | APPLY
SELECT candidate-type value
REJECT candidate-type value
PREFER candidate-type preferred-value preferred-over

NODE | GOAL | OPERATOR | BINDINGS

(AND literal*)
var-spec pdl-expression | pdl-expression

C The Extended-STRIPS domain

;i; File: domain.lisp
;;: Adapted from the Prodigy2.0 domain,
i35 1/26/92 aperez

;3; Notes about this version:

;i; ~no locations (i.e. no "at” predicate,
;;: no numbers)

;33 ~if something is picked up by the robot,
;i; it is mot next-to anything

333 (i.e. (holding x) --> (“(next-to x y))
;i: (see PICKUP-0BJ)

;:s —the robot cannot be holding two things
;is at a time:see PICKUP-0BJ

;3; —next-to mot transitive: see PUTDOWN

;33 —next-to symmetric: see PUTDOWN-EEXT-TO,
;33 PUSH-BOX

;33 ~only boxes are pushable.

(create-problem~-space ’extended-strips
:curreat t)

(ptype-of OBJECT :top-type)
(ptype-of BOX OBJECT)
(ptype-of KEY 0BJECT)
(ptype-of ROON :top-type)

(ptype-of DOOR :top-type)
(ptype-of LOCX :top-type)
(ptype~of LOCY :top-type)

(ptype-of Robot :top-type)
(ptype-of Status :top-type)

(pinstance-of Robot ROBOT)
(pinstance-of Open STATUS)
(pinstance~of Closed STATUS)

Vi
B OPERATORS

;3: Picking up and putting down objects

(operator PICKUP-0BJ
(params <object>)
(preconds
((<object> OBJECT))
(and (arm-empty)
(next-to robot <odbject>)
(carriable <object>)))
(effects
((<other-odj> (or OBJECT DOOR))
(<other-odj2> (or OBJECT DOOR)))
((del (arm-empty))
(del (next-to <object> <other-odj>))
(del (mext-to <other-obj2> <object>))
(add (holdiag <odbject>)))))

(operator PUTDOVN
(params <object>)
(preconds

((<object> OBJECT))

(holding <object>))
(effects
O
({del (holding <object>))
(add (next-to robot <object>))
(add (arm-empty)))))

(operator PUTDOWE-BEXT-TO
(params <object> <other-obj> <room>)
(preconds
((<object> OBJECT)
(<other-obj> (and OBJECT
(diff <object> <other-obj>)))
(<room> ROOK))
(and (holding <object>)
(inroom <other-obj> <room>)
(inroom <object> <room>)
(next-to rodbot <other-obj>)))
(effects
O
((del (holding <object>))
(add (next-to <object> <other-obj>))
(add (next-to robot <object>))
(add (next-to <other-obj> <object>))
(add (arm-empty)))))

HHH
543 Roving to doors (pushing or just going)
;:: and through doors (the robot by itself,
;3; pushing something, or carrying something)

(operator PUSH-TO-DR
(params <box> <door> <room>)
(precoads
((<door> DOOR)
(<room> ROON)
(<box> BOX))

(and (dr-to-rm <door> <room>)
(inroom <box> <room>)
(next-to robot <box>)
(pushable <box>)))

(effects

((<other> (and (or OBJECT DOOR)

(diff <other> <box>)))
(<other2> (or OBJECT DQOR))
(<other3> (and (or OBJECT DOOR)

(diff <other3d> robot))))

((del (next-~to robot <other>))

(del (next~to <box> <other2>))
(del (mext~to <other3> <box>))
(add (next-to <box> <doord>))

(add (next-to robot <door>)))))

(operator PUSH-THRU-DR
(params <box> <door> <roomx> <roomy>)
(preconds
((<box> BOX)
(<door> DOOR)
(<roomx> ROONW)
(<roomy> ROON))
(and (dr-to-rm <door> <roomx>)
(dr-opea <door>)
(next-to <box> <door>)
(next-to rodot <box>)

35

(pushable <box>)
(connects <door> <roomx> <roomy>)
(inroom <box> <roomx>)))
(effeacts
((<other> (and (or OBJECT DOOR)
(diff <other> <box>)))
(<other2> (or DBJECT DOOR))
(<other3> (and (or OBJECT DOOR)
(diff <other3> robot))))
((del (next-to robot <other>))
(del (next-to <box> <other2>))
(del (next~to <other3> <box>))
(del (inroom robo* <roomx>))
(del (inroom <box> <roomx>))
(add (inroom robot <roomy>))
(add (inroom <box> <roomy>)))))

(operator GO-THRU-DR
(params <door> <roomx> <roomy>)
(preconds
((<door> DOOR)
(<roomx> ROON)
(<roomy> ROON))
(and (arm-empty)
(dr-to-rm <door> <roomx>)
(dr-open <door>)
(next-to robot <door>)
(commects <door> <roomx> <roomy>)
(inroom robot <roomx>)))
(effects
((<other> O0BJECT))
((del (next-to robot <other>))
(del (inroom robot <roomx>))
(add (inroom robot <roomy>)))))

(operator CARRY-THRU-DR
(params <object> <door> <roomx> <roomy>)
(preconds
((<object> O0BJECT)
(<door> DOOR)
(<roomx> ROON)
(<roomy> ROOM))
(and (dr-to-rm <door> <roomx>)
(dr-open <door>)
(holdiag <object>)
(comnects <door> <roomx> <roomy>)
(inroom <object> <roomy>)
(inroom robet <roomy>)
(next-to robot <door>)))
(effects
((<other> (and (or UBJECT DOOR)
(diff <other> <object>)
(diff <other> <door>)))
(<other2> (or OBJECT DOOR))
(<other3> (or OBJECT DOOR)))
((del (mext-to robot <other>))
(del (iaroom robot <roomy>))
(del (inroem <object> <roomy>))
(add (inroom robot <roomx>))
(add (inrcom <object> <roomx>)))))

(operator 40TC-DR
(params <deor> <yroem>)
(precends

((<door> DOOR)
(<room> ROON))
(and (dr-to-rm <door> <room>)
(inroom robot <roow>)))
(effects
((<other> (or OBJECT DOOR)))
((del (next-to robot <other>))
(add (next-to robot <door>)))))

;3: Going next to boxes and pushing them

(operator PUSH-BOX
(params <box> <object> <room>)
(preconds

((<box> BOX)

(<abject> OBJECT)

(<room> ROOM))

(and (inroom <object> <room>)
(inroom <box> <room>)
(pushable <box>)

(next-to robot <box>)))
(effects

((<other> (and (or UBJECT DOOR)

(diff <other> <box>)))
(<other2> (or OBJECT DOOR))
(<other3> (and (or OBJECT DOOR)

(diff <other3> robot))))

((del (next-to robot <other>))

(del (next=-to <box> <other2>))
(del (next-to <other3> <box>))
(add (next-to robot <object>))
(add (mext-to <box> <object>))
(add (next-to <object> <box>)))))

(operator GOTO~0B)

(params <object> <room>)
(preconds

((<object> 0BJECT)

(<room> ROON))

(and (inroom <object> <room>)

(inroom robot <room>)))

(effects

((<other> (or OBJECT DOOR)))

((del (mext-to robot <other>))

(add (mext-to robot <object>)))))

vew
2]

;;: actions with doors

(Operator OPEN-DOOR
(params <door>)
(preconds

((<door> Door))

(and (next-to robot <door>)
(unlocked <door>)
(dr-closed <door>)))

(effects
O
((del (dr-closed <door>))
(add (dr-open <door>)))))

(operator CLOSE-DOOR
(params <doer>)
(precends

((<door> DOOR))
(and (next-to robot <door>)
(dr-open <door>)))
(effects
O
((del (dr-opea <door>))
(add (dr-closed <door>)))))

(operator LOCK
(params <door> <key> <room>)
(preconds
((<door> DOOR)
(<key> KEY)
(<room> ROON))

(and (is-key <door> <key>)
(holding <key>)
(dr-to-rm <door> <room>)
(inroom <key> <room>)
(next-to robot <door>)
(dr-closed <door>)
(unlocked <door>)))

(effects

O

((del (unlocked <door>))
(add (locked <door>)))))

(operator UNLOCK
(params <door> <key> <roow>)
(preconds
((<door> DOOR)
(<key> KEY)
(<room> ROON))

(and (is-key <door> <key>)
(holding <key>)
(dr-to-rm <door> <roow>)
(inroom <key> <room>)
(iaroom robot <room>)
(next-to robot <door>)
(locked <door>)))

(effects

O

((del (locked <door>))

(add (unlocked <deor>)))))

B IBFEREBCE RULES

HE

(inference-rule KXYS-ARKE-CARRIABLE
(mede eager)
(params <key>)
(preconds
({<key> KEY))
()]
(effects
O
((add (carriadle <key>)))))

(inference~rule CONNECTS-IS-SYNNETRICAL
(wede eager)
(params <deoor> <reeai> <roem2>)
(preconds

57

({<door> Door)
(<roomi> Room)
(<rocm2> Room))
(comnects <door> <roomi> <room2>))
(effects
O
((add (commects <door> <room2> <roomi>)))))

(inference-rule INFER-ARR-ENPTY
(mode lazy)
(params)
(preconds
O
(- (exists ((<obj> OBJECT))
(holding <obj>))))
(effeacts
O
((add (arm-empty)))))

HHH CONTROL RULES

o e
1o

::; Goal decision rules

(comtrol-rule LOCE-LAST
(if (and (candidate-goal (inroom <x> <room>))
(candidate-goal (locked <door>))
(dr-to-rm <door> <room>)))
(then prefer goal (imroom <x> <room>)
(locked <door>)))

i Binding decision rules

(cortrol-rule PUTDOVE-FUR-ARN-ENPTY
(if (and (curremt-goal (arm-empty))
(curreat-operator PUTDOVE)
(knowa (holding <obj>))))
(then select bindings ((<object> . <obj>))))

(coatrol-rule GOTO-0BJ-ROON
(if (and (curreat-goal (mext-to robot <obj>))
(type-of-object <obj> OBJECT)
(curreat-operator GOT0-0BJ)
(known (inroem <odbj> <rm>))))
(then select bindings
((<object> . <obj>) (<room> . <rm>))))

(comtrol-rule GOTO-DR-ROON
(if (and (curremt-goal (mext-to robot <dr>))
(type-of-object <dr> DOOGR)
(current-operator GUTO-DR)
(kmown (inroom robot <rm>))
(known (dr-to-ram <dr> <rw>))))
(then select bindings
((<door> . <dr>)(<room> . <rm>))))

:: 1 need a gemerator for <ki> because <ki1> in
;3 (“(kmewn)) has to be bouad:

(coatrol-rule GO-TNRU-LOCXED-DR
(if (and (curreat-gosl (inroem rabot <roow>))

(curreat-operator GO-THRU-DR)
(knowr (dr-to-rm <dr> <room>))
(known (locked <dr>))
(uabound~-neg-known
(is~key <dr> <k1>) (<k1> KEY))))
(then reject dindings ((<door> . <dr>))))

33 : Operator decisioa rules

(control-rule PUSK-IF-ROT-CARRIABLE
(if (amd (curremt-goal (mext-to <x> <y>))
(candidate-operator PUTDOVE-NEXT-TO)
(° (kmown (carriadle <x>))
{~ (known (carriable <y>))))))
(then reject operator PUTDOVN-BEXT-TU))

;iiTules from Prodigy2.0 version

(control-rule ONLY-GOTU-DR
(it (and (curreat-goal (mext-to robot <x>))
(type-of-object <x> DGOR)))
(then select operator GOTO-DR))

(control-rule OBLY-COTQ~-0BJ
(if (and (curreat-goal (mext-to robot <x>))
(type-of-object <x> OBJECT)))
(then select operator GOTO-0BJ))

(control-rule ONLY-CARRY-BOX~THRU-DOOR
(if (and (curremt-goal (imroom robot <x>))
(candidate-operator CARRY-THRU-DR)))
(then reject operator CARRY-THRU-DR))

(control-rule OBLY-PUSH~BOX-THRU-DOOR1
(if (and (curreat-goal (imroom robet <x>))
(candidate~operator PUSE-THRU-DR)))
(then reject operator PUSA-THRU-DR))

(control-rule OBLY-PUSR-BOX-TERU-DOOR2
(if (and (curreat-goal (mext-to <y> <x>))
(candidate-operstor PUSE-THRU-DR)))
(then reject operator PUSH-THRU-DR))

(control-rule ONLY-PUTDOVE-BEXT-TO-1
(if (amd (curremt-goal (arm-empty))

(candidate-operator PUTDOVE-BEXIT-T0)))

(then reject operator PUTDOWN-BRXT-TU))

(coatrol-rule ONLY-PUTDOVE-NKXT-T0-2
(if (and (curremt-goal (imroom <xx> <yy>))

(candidate-operator PUTDOVE-SEXY-T0)))

(then reject ocperator PUTDOVE-BEXT-TU))

58

;3; File: fumctions.lisp
333 1/28/92 aperes

HH
iss
] FUBCTIONS

(defun dift (x y)
(not (equal x y)))

Index

sPRODIGY-ROOT-DIRECTORYs, 45, 47

#»SYSTEM-DIRECTORYs, 47
sWORLD~PATH#, 29, 45-47
:search-defanlt,25

abstraction, 40
example, 43
hierarchy, 42

applicable operator, 21

backtracking, 18, 22
dependency-directed, 40

backward chaining, 13, 18

bindings, 20

blocksworld domain, 2

breadth-first search, 19, 25, 33

casual commitment strategy, 23
commands, 29
Common Lisp, 47
conditional effect, 8, 13
control rule, 23, 45, 48
2pply or subgoal, 27
bindings, 26
goal, 26
node, 22, 25
operator, 26
PREFER, 23, 25
REJECT, 23,25
SELECT, 23,25
syntax, 25, 52
control structure, 18

debugging, 35, 48
decision cycle, 18,23
choosing a goal, 19
choosing a node, 19
choosing an operator, 19
choosing apply or subgoal, 21
choosing bindings, 20
deduction, 8
dependency-directed backtracking, 40
depth-first search, 7, 19, 22, 25, 33
domain, 45, 47
theory, 2,7
upgrade from PRODIGY2.0, 17
domain, 29, 46
domains, 1, 30

eaget, see inference rule, eager
effect

conditional, see conditional effect

primary, 13
extended-STRIPS domain, 8, 22

files, 45

<esfinishe>,5

flags, 32
function, 12, 48

generator, 17

goal expression, 4, 9
goal loop, 20

goal tree, 4

inference rule, 2, 8, 12, 13, 20, 45
eager, 13
lazy, 13

infinite type, 15

initial state, 4, 9

instance, 8, 9

instantiation, 9, 20

interface, 29

interrupt handling, 38

lazy, see inference rule, lazy
leamning modules, 50

linear planning, 23, 32
literal, 9

load-domain, 31, 46
loading the system, 29, 45

maiching, 17, 20
means-ends analysis, 4, 18
membership function, 15
meta-predicate, 25, 27

node, 5, 18

types, 18
nonlinear planning, 1, 18, 19, 22, 32

operator, 2, 8, 45
spplication, 21
applying, 18
effect list, 2, 8

output-level, 32

PDLAO, 16, 25, 52
pending goal, 18, 26
predicate
static, 11
problem, 4, 9, 46
loading, 31
running, 31
solving, 31
problea, 3l
problem space, 32, 45
problem spaces, 38
PRODIGY2.0, 1, 17

PRODIGY4.0’s Description Language, 16, 52

quantification, 8, 10, 11
implicit, 11, 13

run, 31

search tree, 5, 18
state, 17
state loop, 22
static property, 11
subgoaling, 18
syntax, 16, 52
control rule, 25, 52

Tower of Hanoi domain, 41
trace, 5, 32,33
truth-maintenance system, 14
type
hierarchy, 8
specification, 2, 8, 9, 11, 12

unification, 20
user interface, 29

X window system, 47

School of Computer Science -
Carnegie Mellon Upiversity — — = —
Pittsburgh, PA 15213-3890

Carnogie Mellon University does not discriminate and Carnegie Melion University is required not
to discriminate in acdmissions and employment on the basis of race, color, national origin, sex or
handicap inviolation of Twtle Viof the Civil Rights Act of 1964, Title IX of the Educational Amendments
of 1972 and Section 504 of the Rehabilitation Actof 1973 or other federal, state, orlocallaws or executive
orders. in addition, Carnegie Metlon University does not discriminate in admissions and employment
on the basis of religion, creed, ancestry, belief, age, veteran status or sexual orientation in violation
of any federal, state, or locat laws or executive orders. Inquiries concerning application of this policy
should be directed to the Provost, Carnegie Melton University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enroliment, Carnagie Mellon University,
5000 Forbes Avenue. Pittsburgh. PA 15213, telephone (412) 268.2056.

